Detailed Site Investigation 15 Anderson Street Lilydale VIC 3140

Yarra Ranges Council 16 May 2016 Final

261-271 Wattletree Road

Malvern VIC 3144

T: 9508 0100

F: 9509 6125

E: admin@prensa.com.au

ABN: 12 142 106 581 Job No: 19476: Client No: Y0003

COMMERCIAL IN CONFIDENCE

Executive Summary

Prensa Pty Ltd (Prensa) was engaged by Yarra Ranges Council (Council) to conduct a Detailed Site Investigation (DSI) of the property located at 15 Anderson Street, Lilydale Victoria (the Site).

At the time of the DSI, the Site was occupied by Council municipal offices and Lilydale public library. Based on information provided by Council, it is understood that the existing Civic Space building and the Contact Centre and public amenities building located in the northern portion of the Site are proposed to be demolished to allow for the construction of a new single or two-level structure for municipal office use. Furthermore, it is also understood that the existing Anderson Street Main Building and adjoining Lilydale Library building are proposed to be fully refurbished in the future without changes to the existing structural footprint.

Council requested Prensa undertake a DSI and Geotechnical Investigation at the Site to infill data gaps in previous environmental assessment and geotechnical investigations undertaken at the Site and to identify the potential for contamination that could represent a potential health risk to construction workers and future users of the Site as a commercial facility.

Council also requested Prensa undertake an intrusive soil assessment and geotechnical investigation in the vicinity of the existing Anderson Street Main Building and Library to investigate slope instability and subsidence issues and to assess the potential for soil contamination in this portion of the Site.

The geotechnical investigation was undertaken by GeoAust Geotechnical Engineers Pty Ltd (GeoAust) in conjunction with the soil sampling component of the DSI. The geotechnical report is appended to this DSI report.

To satisfy Council requirements, the objectives of this DSI were to:

- Identify the potential for contamination to exist as a result of current and/or historical land use activities, which could represent a potential health risk to construction workers and future users of the Site based on the proposed commercial use of the Site;
- Confirm the soil classification for potential future offsite disposal purposes in accordance with relevant EPA guidelines; and
- Recommend any further assessment works or remediation works for any identified contaminated areas, if required.

Current and Historic Land Uses

Based on the site history review, the Site was originally vacant land (possibly used for agricultural/grazing purposes) before it was first developed as Yarra Ranges Council circa 1962. It is considered likely that the existing Municipal Offices (comprising the Anderson Street Main Building, Civic Space and Contact Centre/public amenities building) were constructed circa 1962. Additional buildings and structures were progressively added to the original building and by 1991 the layout of the permanent buildings was generally consistent with the current layout.

Surrounding historical land uses included vacant agricultural land to the south and west, with other areas comprising public open space, a quarry and residential properties.

Previous Environmental Assessment Works

A previous Soil Investigation in conjunction with a Geotechnical Site Investigation was completed at the Site by Connolly Environmental (Connolly) in 2011 for the purposes of characterising in-situ soils for off-site disposal purposes and providing foundation recommendations for a proposed new building in the northern portion of the Site. The Connolly (2011) assessment involved soil sampling from a total of ten (10) soil bores established within the northern portion of the Site and also targeting areas in the immediate vicinity of the Lilydale Library building.

The results of the Connolly (2011) soil investigation reported an isolated elevated concentration of total polycyclic aromatic hydrocarbons (total PAH) and elevated background concentrations of nickel and fluoride. The reported total PAH concentration was considered to be associated with asphalt fragments in the sample and not representative of contamination. Fill and natural soils on site were classified as 'Fill Material' in accordance with EPA Victoria Publication IWRG621 (2009) for off-site disposal purposes. Due to naturally elevated nickel and fluoride concentrations, Connolly noted that the soil 'should not be used for a sensitive use'.

Impact Upon Beneficial Uses

Analytical results from the current DSI and previous Connolly (2011) soil investigation were compared to relevant ecological and health-based criteria for the proposed ongoing commercial land use of the Site. The analytical results were reported to be less than the adopted investigation and screening levels for the protection of human health (including future construction/maintenance workers) in a commercial land use setting at the locations assessed.

Furthermore, the analytical results reported were less than the adopted ecological investigation and screening levels for commercial land use at the locations assessed, with the exception of manganese reported in two (2) near surface samples. Due to the presence of basaltic gravels and crushed rock (road base) noted within the surface of BH4 and BH10, the elevated concentrations of manganese were considered likely to be representative of inherently raised concentrations associated with the basaltic gravels and not representative of contamination. Based on the current and proposed ongoing commercial use of the Site, it is considered unlikely that the reported manganese concentrations will pose a significant ecological risk to the highly modified ecosystems present onsite.

Reported pH, sulphate and chloride concentrations were below levels considered to be potentially aggressive towards concrete and/or steel structures at the locations assessed.

Fill and natural soils at the locations assessed are not considered to represent an aesthetic concern to the ongoing commercial use of the Site.

Off-Site Disposal Classification

Analytical results reported (by Prensa and Connolly) identified analyte concentrations less than the 'Fill Material' threshold criteria in accordance with EPA Victoria Publication IWRG621 (2009) guidelines, with the exception of total PAH, nickel and fluoride.

A single elevated total PAH concentration was reported during the previous Connolly (2011) assessment which was considered by Connolly to be associated with asphalt fragments within the collected sample and not representative of contamination.

Similarly raised concentrations of nickel were reported in near-surface soil during the Prensa assessment and are considered associated with the presence of basaltic gravels within the soil profile.

Elevated fluoride reported in natural soil during the previous Connolly (2011) assessment was considered to be associated with naturally occurring concentrations.

Based on the analytical results, the fill and natural soils within the areas assessed are classified as Fill Material for off-site disposal purposes.

This classification allows for a total volume of up to 5,000 m³ of soil generated during future construction, refurbishment and/or maintenance works on the Site to be disposed off-site in accordance with EPA Industrial Waste Resource Guidelines. Should additional soil volumes require off-site disposal, further sampling and analysis may be required.

Additional Assessment and/or Remediation

The findings of this DSI suggest that it is not considered necessary for further assessment and/or remediation to be undertaken at the Site.

Recommendations

Based on the above findings the following recommendation has been provided:

• The presence of existing buildings on the Site prevented assessment of subsurface conditions across the Site. Should subsurface conditions inconsistent with those described in this report be encountered during future construction, refurbishment and/or maintenance works at the Site, advice should be sought from an environmental consultant.

Statement of Limitations

This document has been prepared in response to specific instructions from Yarra Ranges Council to whom the report has been addressed. The work has been undertaken with the usual care and thoroughness of the consulting profession. This document is privileged and confidential and has been prepared for the purposes of legal advice and anticipated legal proceedings. The work is based on generally accepted standards, practices of the time the work was undertaken. No other warranty, expressed or implied, is made as to the professional advice included in this report.

The report has been prepared for the use by Yarra Ranges Council and the use of this report by other parties may lead to misinterpretation of the issues contained in this report. To avoid misuse of this report, Prensa advise that the report should only be relied upon by Yarra Ranges Council and those parties expressly referred to in the introduction of the report. The report should not be separated or reproduced in part and Prensa should be retained to assist other professionals who may be affected by the issues addressed in this report to ensure the report is not misused in any way.

Prensa is not a professional quantity surveyor (QS) organisation. Any areas, volumes, tonnages or any other quantities noted in this report are indicative estimates only. The services of a professional QS organisation should be engaged if quantities are to be relied upon.

Sampling Risks

Prensa acknowledges that any scientifically designed sampling program cannot guarantee all sub-surface contamination will be detected. Sampling programs are designed based on known or suspected site conditions and the extent and nature of the sampling and analytical programs will be designed to achieve a level of confidence in the detection of known or suspected subsurface contamination. The sampling and analytical programs adopted will be those that maximises the probability of identifying contaminants. Yarra Ranges Council must therefore accept a level of risk associated with the possible failure to detect certain sub-surface contamination where the sampling and analytical program misses such contamination. Prensa will detail the nature and extent of the sampling and analytical program used in the investigation in the investigation report provided.

Environmental site assessments identify actual subsurface conditions only at those points where samples are taken and when they are taken. Soil contamination can be expected to be non-homogeneous across the stratified soils where present on site, and the concentrations of contaminants may vary significantly within areas where contamination has occurred. In addition, the migration of contaminants through groundwater and soils may follow preferential pathways, such as areas of higher permeability, which may not be intersected by sampling events. Subsurface conditions including contaminant concentrations can also change over time. For this reason, the results should be regarded as representative only.

Yarra Ranges Council recognises that sampling of subsurface conditions may result in some cross contamination. All care will be taken and the industry standards used to minimise the risk of such cross contamination occurring, however, Yarra Ranges Council recognises this risk and waives any claims against Prensa and agrees to defend, indemnify and hold Prensa harmless from any claims or liability for injury or loss which may arise as a result of alleged cross contamination caused by sampling.

Reliance on Information Provided by Others

Prensa notes that where information has been provided by other parties in order for the works to be undertaken, Prensa cannot guarantee the accuracy or completeness of this information. Yarra Ranges Council therefore waives any claim against the company and agrees to indemnify Prensa for any loss, claim or liability arising from inaccuracies or omissions in information provided to Prensa by third parties. No indications were found during our investigations that information contained in this report, as provided to Prensa, is false.

Recommendations for Further Study

The industry recognised methods used in undertaking the works may dictate a staged approach to specific investigations. The findings therefore of this report may represent preliminary findings in accordance with these industry recognised methodologies. In accordance with these methodologies, recommendations contained in this report may include a need for further investigation or analytical analysis. The decision to accept these recommendations and incur additional costs in doing so will be at the sole discretion of Yarra Ranges Council and Prensa recognises that that Yarra Ranges Council will consider their specific needs and the business risks involved. Prensa does not accept any liability for losses incurred as a result of Yarra Ranges Council not accepting the recommendations made within this report.

Table of Contents

1	In	ntroduction	1
2	В	ackground	1
3	О	2	
4	M	1ethodology	2
5	Te	echnical Framework	3
6	D	esktop Review	3
	6.1	Site Location and Description	3
	6.2	Surrounding Land Uses	4
	6.3	Geology	5
	6.4	Hydrogeology	5
	6.5	EPA Victoria Groundwater Quality Restricted Use Zones	7
	6.6	EPA Victoria Priority Sites Register	7
	6.7	Review of Surrounding Environmental Audit Reports	7
7	Sı	upplied Documentation	10
	7.1	Connolly Soil Investigation Report (2011)	10
8	Si	ite History Review	11
	8.1	Current Title Information	11
	8.2	Historical Title Search	12
	8.3	Aerial Photographs	12
	8.4	Royal Historical Society of Victoria	14
	8.5	State Library of Victoria Search	14
9	Si	ite Inspection	14
1	0	Contaminants of Potential Concern	15
1	1	Soil Assessment	16
	11.1	Sampling Strategy	16
	11.2	2 Soil Sampling	16
	11.3	Soil Screening	17
	11.4	1 Analytical Schedule	18
	11.5	Beneficial Uses and Investigation Levels	19
	11.6	Adopted Investigation Levels, Screening Levels and Criteria	19
1	2	Findings	23

12.1	Proposed New Building Footprint (northern portion of the Site)	23
12.2	2 Proposed Building Refurbishment (southern portion of the Site)	24
13	Quality Control/Quality Assurance	25
13.1	L Quality Control Samples	25
13.2	2 Laboratory Quality Control/Quality Assurance	26
14	Discussion	28
14.1	Desktop Review and Site Inspection	28
14.2	2 Impacts on Beneficial Uses	28
14.3	3 Off-Site Disposal Classification	29
15	Conclusion	30
16	Recommendations	32
	Abbreviations	
	Figures	
	Tables	
	Appendix A: Planning Property Reports	
	Appendix B: DELWP Groundwater Resource Report	
	Appendix C: EPA Priority Sites Register Extract	
	Appendix D: Previous Environmental Report	
	Appendix E: Current Title Information	
	Appendix F: Historical Certificates of Title	
	Appendix G: Aerial Photographs	
	Appendix H: Royal Historical Society of Victoria	
	Appendix I: State Library of Victoria Search	
	Appendix J: Borelogs	
	Appendix K: EIL Calculations	
	Appendix L: Chain of Custody Documenation	
	Appendix M: NATA Accredited Analytical Results	

Appendix N: Geotechnical Report

1 Introduction

Prensa Pty Ltd (Prensa) was engaged by Yarra Ranges Council (Council) to conduct a Detailed Site Investigation (DSI) of the property located at 15 Anderson Street, Lilydale Victoria (the Site).

2 Background

The Site was located at 15 Anderson Street, Lilydale and was occupied by Council municipal offices and Lilydale public library. Based on the information provided by Council, it is understood that the existing Civic Space building and the Contact Centre and public amenities building located in the northern portion of the Site are proposed to be demolished in the future to allow for the construction of a new single or two-level structure for municipal office use. Whilst architectural plans of the proposed development are currently not available, it is understood that the footprint of the new building will cover an approximate ground floor plan area of 3,000 m². The proposed development is unlikely to include basement levels.

It is also understood that the existing Anderson Street Main Building and adjoining Lilydale Library are proposed to be fully refurbished in the future without changes to the existing structural footprint.

The location of the Site and layout of existing buildings is provided in Figures 1 and 2 in the 'Figures' section of this report.

Connolly Environmental Pty Ltd (Connolly) previously completed a Soil Investigation at the Site in conjunction with a Geotechnical Site Investigation completed by HardRock Geotechnical Pty Ltd (Hardrock) in November/December 2011 for the purposes of characterising in-situ soils for off-site disposal purposes and providing foundation recommendations for a proposed new building in the northern portion of the Site. The Connolly (2011) assessment involved soil sampling from a total of ten (10) soil bores (B1-B10) established within the northern portion of the Site and also targeting the Lilydale Library building.

The results of the Connolly (2011) soil investigation reported an isolated elevated concentration of total polycyclic aromatic hydrocarbons (total PAH) and elevated background concentrations of nickel and fluoride in samples of fill or natural soil at the Site. The reported total PAH concentration was considered to be associated with asphalt fragments in the collected fill sample and not representative of contamination. Fill and natural soils on site were classified as 'Fill Material' in accordance with EPA Victoria Publication IWRG621 (2009) for offsite disposal purposes. Due to naturally elevated nickel and fluoride concentrations, Connolly noted that the soil 'should not be used for a sensitive use'.

Council requested Prensa undertake a Detailed Site Investigation (DSI) and Geotechnical Investigation at the Site to infill data gaps in the previous environmental assessment and geotechnical investigation and to identify the potential for contamination at the Site that could represent a potential health risk to construction workers and future users of the Site as a commercial facility.

Council also requested an intrusive soil assessment and geotechnical investigation be completed in the vicinity of the existing Anderson Street Main Building and Lilydale Library to investigate slope instability and subsidence issues and to assess the potential for soil contamination in this portion of the Site.

The geotechnical investigation was undertaken by GeoAust Geotechnical Engineers Pty Ltd (GeoAust) in conjunction with the environmental soil sampling component of the DSI. The geotechnical report is provided as Appendix N of this report.

3 Objective

The objectives of the DSI were to:

- Identify the potential for contamination to exist at the Site as a result of current and/or historical land use activities, which could represent a potential health risk to construction workers and future users of the Site based on the proposed ongoing commercial use of the Site;
- Confirm the soil classification for potential future offsite disposal purposes in accordance with relevant EPA guidelines; and
- Recommend any further assessment works or remediation works for any identified contaminated areas, if required.

Reference should be made to GeoAust fee proposal [Ref: 4548-3-Q], dated 15 February 2016 for the scope and objectives of the geotechnical investigation.

4 Methodology

To complete the DSI, Prensa undertook the following scope of works:

- A desktop review of the following information sources:
 - Current planning property reports;
 - Publicly available topographical, geological and hydrogeological maps;
 - Visualising Victoria's Groundwater (VVG) online database;
 - Department of Environment, Land, Water & Planning (DELWP) Groundwater Resource Reports;
 - Review of nearby Groundwater Quality Restricted Use Zones (GQRUZ);
 - Victorian EPA Priority Sites Register (PSR);
 - Review of publically available EPA environmental audit reports for nearby sites (within a 1 km radius of the Site);
 - > General internet search; and
 - Review of previous soil investigation and geotechnical reports prepared by Connolly and Hardrock for the Site.
- A limited site history review utilising the following information sources:
 - > Current and historical certificates of title;
 - Current and historical aerial photographs;
 - Information provided by Royal Historical Society of Victoria (RHSV);
 - Melbourne Metropolitan Board of Works (MMBW) plans or other available historic plans/maps.
- Site inspection;
- Project management of the Geotechnical Investigation, undertaken by a specialist consultant subcontracted by Prensa;
- Intrusive soil investigation, which included the following:
 - Preparation of a site-specific safety plan, including safe work method statements (SWMS);
 - ➤ Collection of soil samples from four (4) gridded borehole locations established in the northern portion of the Site (proposed construction zone of new building);

- ➤ Collection of soil samples from three (3) borehole locations established in the vicinity of the Anderson Street Main Building and Lilydale Library;
- Analysis of soil samples (including quality control samples) at a NATA accredited laboratory;
- Interpretation of the analytical results;
- Comparison of results against relevant investigation and screening levels based on the proposed land use setting; and
- Preparation of this DSI report.

5 Technical Framework

In completing the aforementioned tasks, Prensa undertook the works in general accordance with the following:

- State Environment Protection Policy (SEPP), Prevention and Management of Contamination of Land, 2002;
- National Environment Protection (Assessment of Site Contamination) Measure (NEPM), 1999
 (April 2013), (NEPM 2013 Guidelines);
- Australian Standard (AS) 4482.1, Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil, Part 1: Non-volatile and semi-volatile compounds, 2005;
- Australian Standard (AS) 4482.2, Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 2: Volatile Substances, 1999;
- The Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Technical Report no. 10: *Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater*, 2011;
- Victorian EPA Industrial Waste Resource Guidelines (IWRG621), Soil Hazard Categorisation and Management, June 2009;
- Victorian EPA Industrial Waste Resource Guidelines (IWRG701), Sampling and Analysis of Waters, Wastewaters, Soils and Waste, June 2009; and
- Victorian EPA Industrial Waste Resource Guidelines (IWRG702), Soil Sampling, June 2009.

6 Desktop Review

6.1 Site Location and Description

The Site is located at 15 Anderson Street, Lilydale, approximately 33 km north east of the Melbourne central business district (CBD).

A description of the Site has been provided in Table 1 on the following page.

Table 1: General Site Description						
Site Address	15 Anderson Street, Lilydale, Victoria 3140 (Melway Ref: 38, F5)					
Total Area of Site	Approximately 12,050 m ² (1.2 hectares)					
Title Identification	Lot 1 on Plan of Subdivision (PS) 546467D Certificate of title Volume 11222, Folio 059					
Local Council	Yarra Ranges Council					
Planning Zone	Public Use Zone – Local Government (PUZ6) Schedule to the Public Use Zone – Local Government					
Planning Overlays	Land Subject to Inundation Overlay – (LSIO) Land Subject to Inundation Overlay Schedule (LSIO) Public Acquisition Overlay (PAO) Public Acquisition Overlay (PAO) 9 Schedule (PAO9)					
Current Site Use	Yarra Ranges Council municipal offices and Lilydale Library.					
Proposed Use	Ongoing commercial use as municipal offices and public library.					
Proposed Development	A new single or two-level municipal building with a surface footprint of approximately 3,000 m² is proposed to be constructed within the footprint of the existing Civic Space and Contact Centre/public amenities buildings located in the northern portion of the Site. It is unlikely that the proposed development will include basement level/s. Detailed architectural plans of the proposed development were not available at the time of preparation of this report. Complete refurbishment of the existing Anderson Street Main Building and Lilydale public library is also proposed without substantive changes to the existing structural footprint.					

A site locality plan has been provided as Figure 1 in the 'Figures' section of this report.

Planning Property Reports sourced from the Department of Transport, Planning and Local Infrastructure (DTPLI) for the Site are provided in Appendix A.

6.2 Surrounding Land Uses

Based on a review of available on-line information sources and a site inspection, the Site was noted to be surrounded by the following current features and/or land uses:

- North: Hardy Street (directly north), Country Fire Authority (CFA) station, car dealership (Alpha Romeo/Hyundai), car rental/dealership, vacant land, Telstra Exchange Tower, Caltex service station (approximately 150 m north east), commercial properties;
- East: Anderson Street (directly east), low density residential properties (beginning approximately 55 m east);
- South: Public open space (including tennis courts and vacant parkland), nursing home (approximately 240 m south east), Lilydale Lake (approximately 295 m south), Yarra Valley Water Refill Station (approximately 620 m south east), Olinda Creek (approximately 820 m south east); and
- West: Lilydale Bowling Club (directly west), Council car parking, public open space (including skate park, go-kart track, a small unnamed lake and vacant parkland), commercial properties (approximately 260 m east), Lilydale quarry (approximately 1.2 km west to south west, also known as Cave Hill Quarry).

The closest sensitive receptors were considered to be the low density residential properties approximately 55 m east, Lilydale Lake approximately 295 m south, Olinda Creek approximately 820 m south and the public open spaces directly south and west of the Site.

6.3 Geology

Review of the Geological Survey of Victoria *Ringwood* 1:63,360 Map Sheet No. 849, Zone 7, 1981 indicated that the Site was located close to the boundary of the following two (2) geological units:

- Quaternary-aged low-level alluvial deposits consisting of beach sands; and
- Devonian-aged rhyolite, referred to as 'Coldstream Rhyolite' consisting of a combination of often finely flow-banded, interbedded fragmental rhyolite.

Based on field observations and review of the GeoAust report, the underlying rock type at the Site was consistent with rhyolite.

6.4 Hydrogeology

6.4.1 Surface Water Receptors

The closest off-site surface water receptors to the Site were considered to be:

- Lilydale Lake, located approximately 295 m south; and
- Oldina Creek, located approximately 820 m south east.

6.4.2 Groundwater Database Search

A search of the Visualising Victoria's Groundwater (VVG) on-line database (<u>www.vvg.org.au</u>, accessed on 31st March 2016) indicated that groundwater in the vicinity of the Site is likely to be present between 10-20 m below ground level (bgl) and is likely to have a salinity range of between 1,000-3,500 mg/L as total dissolved solids (TDS).

These database search results were consistent with a review of the Department of Environment, Land, Water & Planning (DELWP) Groundwater Resource Report obtained for the Site locality, which also reported an expected salinity of between 1,001 and 3,500 mg /L as TDS and stated that groundwater would likely be encountered within basement sedimentary bedrock (fractured rocks) such as siltstone, mudstone, shale and/or igneous rocks (volcanic) between 10 and 20 m bgl.

Based on the expected salinity range of groundwater, this would place groundwater within Segment B in accordance with the State Environment Protection Policy (SEPP) Groundwaters of Victoria, 1997.

The beneficial uses of groundwater required to be protected for Segment B groundwater conditions include:

- Maintenance of Ecosystems;
- Potable Mineral Water Supply;
- Agriculture, Parks and Gardens;
- Stock Watering;
- Industrial Water Use;
- Primary Contact Recreation; and
- Buildings and Structures.

A copy of the DELWP Groundwater Resource Report is provided as Appendix B.

A search of the VVG on-line database and DELWP Water Measurement Information System for groundwater bores within a 2 km radius of the Site indicated there were twenty (20) bores registered. A review of the available groundwater bore information has been summarised in Table 2 below.

Table 2: Summary of Surround Groundwater Bores

Bore ID	Easting / Northing	Distance (m) / Direction ⁽¹⁾	Bore Depth (m) ⁽²⁾	Groundwater Use	Lithology/ Rock Type	Installation Date
WRK980963	354518/5819565	428 W	25	N/A ⁽³⁾	N/A	N/A
WRK071943	354509/5819583	437 W	32	Observation	Clay, limestone	2012
WRK071944	354509/5819583	437 W	32	Observation	Clay, limestone	2012
WRK989259	354477/5820063	671 NW	25	N/A	N/A	N/A
WRK066917	354207/5819888	799 WNW	4.5	Observation	Clay	2012
WRK066918	354207/5819888	799 WNW	13	Observation	N/A	2012
WRK986808	355577/5820118	827 NE	25	N/A	N/A	N/A
WRK989505	354855/5820598	1019 N	25	N/A	N/A	N/A
WRK978753	355277/5820652	1119 NNE	100	N/A	N/A	N/A
WRK052286	35430/5818460	1198 SSW	20.8	Observation	Quarry overburden	2010
WRK059151	355929/5820329	1234 NE	9	Observation	Clay	2010
WRK070695	355931/5820355	1251 NE	73	Industrial	Clay, mudstone, shale	2012
WRK990818	355805/5818589	1314 SE	150	N/A	N/A	N/A
WRK052290	354368/5818401	1316 SSW	42	Observation	N/A	2010
WRK987345	356022/5820350	1321 NE	25	N/A	N/A	N/A
WRK987347	356027/5820382	1344 NE	25	N/A	N/A	N/A
WRK987346	356044/5820359	1345 NE	25	N/A	N/A	N/A
WRK043013	353663/5818784	1511 SWS	N/A	Industrial/ Dewatering	N/A	N/A
WRK966943	356273/5818844	1519 ESE	25	N/A	N/A	N/A
WRK982482	356262/5820487	1597 NE	25	N/A	N/A	N/A

⁽¹⁾ Relative to the Site (MGA 55 easting 354946, northing 5819583)

The search indicated that registered groundwater bores located within a 2 km radius of the Site were predominantly listed as being used for observation, industrial and/or dewatering purposes or the use was unspecified. There were no domestic, stock or irrigation bores registered within 2 km of the Site. No further information on groundwater chemistry or lithology was available for the groundwater bores reviewed.

⁽²⁾ m bgl – metres below ground level

 $^{^{(3)}}$ N/A – no information available

6.5 EPA Victoria Groundwater Quality Restricted Use Zones

A review of the EPA Victoria *Map of Groundwater Restricted Use Zones in Victoria* (http://www.epa.vic.gov.au, accessed on the 1st April 2016) identified that the Site was not located within, nor within the vicinity of an EPA Victoria designated Groundwater Quality Restricted Use Zone (GQRUZ).

6.6 EPA Victoria Priority Sites Register

A search of the EPA Priority Sites Register (PSR) was undertaken through Landata, a system of DELWP. The extract obtained for the Site address 15 Anderson Street, Lilydale, Victoria and 13 Hardy Street, Lilydale (parcel of land incorporating the Site) dated 4th April 2016 stated that the Site is not listed on or located in the vicinity of a property listed on the PSR.

A search of the EPA Victoria website and VVG online database on 1st April 2016 noted that the nearest property in relation to the Site listed on the PSR was a former landfill requiring ongoing management located on Ingram Road, Coldstream, approximately 4.4 km north east of the Site. Based on the distance of the listed priority site in relation to the subject Site, it is unlikely that any contamination issues associated with this property would impact on the Site.

The EPA PSR extract for the Site has been provided in Appendix C of this report.

6.7 Review of Surrounding Environmental Audit Reports

A search of the EPA Victoria list of environmental audit reports (<u>www.portal.epa.vic.gov.au</u>, accessed 1st April 2016) indicated there were two (2) environmental audits completed for properties within 3 km of the site.

A summary of findings of the audit report review is provided in Table 3 on the following page.

Table 3: Summary of Environmental Audits within a 3 km radius of the Site

Site	Cavehill Limestone Quarry, Hull Road, Lilydale	Cavehill Limestone Quarry, Hull Road, Lilydale (additional portion of land directly north of the former 2010 audit boundary)		
CARMS	65516-1	65516-2		
Date of EA ⁽¹⁾ Report	August 2010	April 2015		
Certificate/Statement	Certificate	Certificate		
Distance from Site	2.3 km to the south west	1.9 km to the south west		
Previous Use/s	Agricultural / grazing land	Agricultural and as a buffer zone between the quarry and residential area.		
	Devonian-aged sandstone, underlain by limestone, underlain by siltstone.	Devonian-aged sandstone, limestone and siltstone.		
Geology	Field observations indicated natural formation was encountered at 0.2 m bgl ⁽²⁾ and comprised basaltic silty clays. Limestone was also observed to be outcropping.	Field observations indicated natural formation was encountered at depths of 0.4 to 2.0 m bgl and comprised silty clay. Natural siltstone was encountered at depths of 1.4 to 2.0 m bgl.		
Groundwater flow direction	An intrusive groundwater investigation was not undertaken. Regional groundwater flow was considered likely to be south to south west direction. The flow direction was also considered likely to be influenced by extensive dewatering activities undertaken at the adjacent quarry (to the north).	An intrusive groundwater investigation was not undertaken. Regional groundwater flow was considered likely to be in a south to south west direction. The flow direction was considered likely to be influenced by extensive dewatering activities undertaken at the adjacent quarry (to the north).		
Hydrogeology	Unconfined fractured bedrock comprising sandstone, limestone and siltstone.	Unconfined fractured limestone, sandstone and siltstone.		
Number of Wells	N/A	N/A		
Depth of Wells (m)	N/A	N/A		
Depth to GW ⁽³⁾	Within the regional aquifer ranges between 10 to 20 m bgl however due to excessive dewatering activities at the adjacent quarry, GW is expected to be encountered deeper. Gauging of offsite wells indicated GW depths ranged between 38 and 100 m bgl.	N/A		

Table 3: Summary of Environmental Audits within a 3 km radius of the Site

rable 3. Summary of Environmental Addits Within a 3 km radius of the Site								
Contaminants found over detection limits or adopted investigation levels	SOIL – total chromium, nickel (both considered naturally occurring background concentrations) GW – N/A	SOIL – beryllium, iron (both considered naturally occurring background concentrations) $GW-N/A$						
TDS ⁽⁴⁾ (mg/L)	1,300 to 1,700 mg/L (expected based on sampling from adjacent quarry pit)	1,001 to 3,500 mg/L (expected)						
GW Segment	Segment B (expected)	Segment B (expected)						

⁽¹⁾ EA – environmental audit

⁽²⁾ m bgl – metres below ground level

⁽³⁾ GW – groundwater

⁽⁴⁾ TDS – total dissolved solids

7 Supplied Documentation

Documentation pertaining to a previous environmental assessment at the Site was provided by Council to Prensa for review. A review of the supplied documentation has been provided below.

7.1 Connolly Soil Investigation Report (2011)

Peddle Thorp Architects Pty Ltd engaged Connolly Environmental (Connolly) to conduct a soil investigation at the Site in 2011 (ref: *Soil Investigation: Yarra Ranges Shire Offices, Lilydale, VIC,* dated December 2011). The purpose of the investigation was to assess the contamination status of the soil within the proposed development area for off-site disposal (in accordance with *Victorian EPA Industrial Waste Resource Guidelines, Soil Hazard Categorisation and Management* (IWRG621)). It was noted that geotechnical investigations were also conducted by Hardrock as part of these works.

Connolly established a total of ten (10) soil bores which were advanced to a maximum depth of 1.5 m below ground level (bgl). Soil samples were collected from approximately 0.2 m, 0.5 m, 1.0 m and at the base of each bore. The approximate locations of the Connolly boreholes are depicted in Figure 3 in the 'Figures' section of this report.

Sample locations B1, B2 and B10 were noted to comprise an asphalt surface underlain by crushed rock and silty clay fill to a maximum depth of 0.5 m. Other surface layers were grassed. Fill across the Site was noted to comprise silty clay and clayey silt, brown with minor sand and crushed rock (described as being possibly disturbed natural from previous cut and fill activities associated with landscaping works). The depth to fill varied across the Site and the maximum depth of fill encountered was 0.9 m bgl.

Natural material onsite reportedly comprised silty clay and clayey silt, which was described as light brown and greyish brown with yellow mottling. Two (2) boreholes (B7 and B10) located along the north western boundary and south western portion of the Site, respectively, were terminated on inferred weathered siltstone at 1.1 m bgl. Localised perched water was reportedly encountered in fill soils above the natural silty clay layer at one (1) borehole (B1), located to the north east of the Civil Space building at 0.5 m bgl.

A summary of soil exceedances and conclusions from the Connolly investigation has been provided in Table 4 on the following page.

Table 4: Summary of Soil Exceedances (Connolly 2011)

Borehole	Depth (m bgl)	Contaminant	Fill/Natural	Soil Category	Explanation for elevated concentration
B1	0.2	Total PAH	Fill	С	Indicative of asphalt fragments within the sample, therefore not representative of the contamination status.
B2	1.5	Fluoride	Natural	С	Naturally occurring background concentrations.
	0.2	Nickel	Fill	С	Associated with the presence of basaltic gravels.
В3	1.5	Fluoride	Natural	С	Naturally occurring background concentrations.
B4	1.4	Fluoride	Natural	С	Naturally occurring background concentrations.
В7	1.0	Fluoride	Natural	С	Naturally occurring background concentrations.
В9	0.5	Nickel	Fill	С	Associated with the presence of basaltic gravels.
B10	1.0	Fluoride	Natural	С	Naturally occurring background concentrations.

Based on analytical results and field observations, Connolly concluded the following:

- "Fill material on site is classified as EPA Fill material with naturally elevated nickel for offsite disposal purposes;
- Natural soils were classified as EPA Fill material with naturally elevated fluoride for offsite disposal purposes; and
- Given the elevated naturally occurring concentrations of fluoride and nickel, this soil should not be used for a sensitive use. It can be disposed to landfill or used within a non-sensitive development (such as commercial/industrial). The receiver of the soils must be notified of the naturally elevated fluoride and nickel and provided with the results."

A copy of the Connolly (2011) report is provided as Appendix D.

8 Site History Review

8.1 Current Title Information

Current certificates of title for 15 Anderson Street, Lilydale, Victoria were obtained from Landata.

The Site is described as being within Lot 1 on Plan of Subdivision 546467D within certificate of title Volume 11222, Folio 059. Based on a copy of the plan obtained from Landata, the Site comprises the north eastern corner of the aforementioned certificate of title. The proprietor of the Site was listed as Yarra Ranges Shire Council of 15 Anderson Street, Lilydale from 17th June 2010. The parent title of the Site was listed as Volume 11175, Folio 939.

A copy of the current certificate of title and plan information is provided as Appendix E.

8.2 Historical Title Search

A review of historical title information obtained from Landata indicated that there was limited information available for the Site.

The Site was formerly described as Lot 1 on Title Plan 944762T within Volume 11175, Folio 939. Based on plan information, the Site comprises the north eastern portion of the certificate of title. The proprietor of the Site was listed as Yarra Ranges Shire Council of Anderson Street, Lilydale from 30th November 2009. No parent title was listed for certificate of title Volume 11175, Folio 939.

No further certificate of title information could be obtained for the Site.

A copy of the historical title information and plan information is provided as Appendix F.

8.3 Aerial Photographs

Aerial photographs dating back to 1956 were reviewed as part of the DSI. Descriptions of the aerial photographs are presented in Table 5.

Copies of the aerial photographs reviewed are provided in Appendix G of this report.

	Table 5: Aerial Photographs							
Date	Observations On-Site	Observations Off-Site						
1956	The Site appeared to comprise vacant land, possibly used for agricultural/grazing purposes.	The surrounding area appeared to comprise residential/commercial properties to the north (fronting Main Street, Lilydale) and vacant land, possibly used for agricultural/grazing purposes to the south.						
		A patch of dense vegetation was visible to the south east of the Site.						
		The Site was bounded by Hardy Street to the north and Anderson Street to the east. Maroondah Highway was visible approximately 165 m north of the Site, running in an east to west direction. The Lilydale train line was visible approximately 635 m east of the Site, running in a north easterly to south westerly direction.						
		The beginning of Melba Park (including Lilydale Football Club) was visible approximately 500 m north west of the Site.						
		An unnamed creek was visible approximately 235 m west of the Site, running in a north to south direction.						
1962	A building (possibly Anderson Street Main Building and Civic Space) was visible in approximately the centre to western boundary of the Site. Two (2)	The surrounding area appeared to comprise a combination of residential properties, commercial/industrial properties and vacant land.						
	driveways entered the Site off Anderson Street and	Obvious changes included the following:						
	one (1) driveway was visible running onto the Site from Hardy Street in the north western corner of the Site. A small rectangular building was observed to the north of the main council building which is possibly the existing Contact Centre and Public Toilet.	 A portion of the dense vegetation to the east of the Site had been cleared for residential development; Land directly west of the Site appeared to have been cleared and levelled; and A property had been cleared and levelled approximately 300 m west of the Site. 						

Table 5: Aerial Photographs

Date	Observations On-Site	Observations Off-Site
1972	The buildings that was previously under construction appeared to have been completed. A rectangular building (Anderson Street Main Building and Civic Space) was visible with a smaller adjoining rectangular building to the north.	Further development had occurred in the surrounding area. Hardy Street had been extended across the unnamed creek in a westerly direction. The Lilydale Bowling Club was visible directly west of the Site. Commercial/industrial properties were visible around the intersection of Anderson Street and Maroondah Highway including a service station (approximately 170 m north east of the Site) and properties with sawtoothed roofs. A small property (currently Lilydale Nursing Home) was also visible approximately 145 m south east of the Site. Further residential development had occurred in the estate directly east of the Site on the eastern side of Anderson Street.
1978	The Site appeared relatively unchanged from the previous aerial photograph.	The surrounding area remained relatively unchanged from the previous aerial photograph with the exception of the Lilydale Bowling Club (two (2) greens and associated club rooms) being visible and the land directly west of the Site and the Lilydale Bowling Club which appeared to have been cleared and levelled.
1981	The Site appeared relatively unchanged with the exception of an extension being added onto the Anderson Street Main Building in the south west corner.	The surrounding land use remained relatively unchanged. Four (4) tennis courts and an associated car park had been developed directly south west of the Site on the land that had previously been cleared and levelled.
1991	An additional building (Lilydale Library) was visible to the south of the Anderson Street Main Building. A small square building (Compliance & Risk Portable) had been added to the west of the Civic Space.	The surrounding land use remained relatively unchanged. An additional green was added to the Lilydale Bowling Club directly west of the Site and a car park had been developed on the western portion of the Lilydale Bowling Club. Unmade roads were visible to the south of the Site and ran south towards Lilydale Lake (visible approximately 295 m south of the Site). A small patch of land directly south of the Site appeared to have been concreted.
2006	The Site appeared relatively unchanged from the previous aerial photograph with the following exceptions noted. Two (2) buildings (Health Portables) had been constructed to the north and south of the Compliance & Risk Portable. The Health Portable to the north extended into the car park (off Hardy Street). The Health Portable to the south extended along the western boundary of the Anderson St Main Building. The Site layout was consistent with the current site layout.	The surrounding land use remained relatively unchanged. A rectangular building (Tree House Building and People & Culture Portable) was visible on the patch of concrete directly south of the Site. A skate park and go-karting track was visible to the west of the tennis courts, approximately 130 m west of the Site.
2016	The Site appeared relatively unchanged from the previous aerial photograph.	The surround land appeared relatively unchanged from the previous aerial photograph, with the exception of a building (Strategy & Sustainability Portable) to the south of the Site being constructed.

8.4 Royal Historical Society of Victoria

Limited information was provided by the Royal Historical Society of Victoria (RHSV) on the historical development of the Site and surrounding area.

RHSV acknowledged that the Site was located south of the Maroondah Highway, on the western side of Anderson Street and south of Hardy Street.

The area of Lilydale was first recognised as a Shire in 1872 and as a district in 1956. A search of the Victorian Municipal Directory of 1885 showed that it was formerly known as "Lillydale" and predominantly comprised grazing and viticultural land.

The Sands and McDougall (S&MD) Directories listed Lilydale as a country town and provided alphabetical lists of residents. In 1933, S&MD Directories list a Shire Hall in Lilydale however the location was unknown.

A search of the Melways Directories showed that from (at least) 1966 to the present the Site had been used by the Lilydale Shire Offices.

No further information was provided by RHSV.

A copy of the RHSV report is provided as Appendix H of this report.

8.5 State Library of Victoria Search

A search of the State Library of Victoria (SLV) website was undertaken by Prensa on 5th April 2016. The following information pertinent to the Site and surround area has been summarised below. Copies of the information obtained from SLV are provided in Appendix I of this report.

8.5.1 Melbourne Metropolitan Board of Works

A search of the Melbourne Metropolitan Board of Works (MMBW) detailed plan 820 BJE, dated 1930 depicted the land to the north of the Site (northern side of Hardy Street). The properties directly north of the Site (between Hardy/Main Street) appeared to be owned by individuals and possibly comprised residential or small commercial properties. Properties further north of the Site also appeared to have individually owned (likely to be residential) or Crown Land (Shire Hall, public open spaces, schools and churches), with the exception of the 'Lillydale Gas Company Ltd.' (currently Lilydale Football Club) which was observed 470 m north west of the Site. The Council Shire Hall was observed on the south western corner of Chapel Street and Castella Street.

No details pertaining to the Site were provided, however, it was considered likely to be vacant land.

8.5.2 Trove

A flier obtained from SLV website indicated that the land directly east of the Site (on the eastern side of Anderson Street) had been residential since approximately 1887. The flier was an advertisement for land for sale in 'Mount View Estate'.

No details pertaining to the Site were provided, however, it was considered likely to be vacant land.

9 Site Inspection

An inspection of the Site involving a limited visual walkover of internal and external Site buildings and immediately surrounds was completed by Prensa on 3^{rd} March 2016 and during fieldworks undertaken on 22^{nd} , 23^{rd} and 24^{th} March 2016.

Detailed below is a summary of observations made during the site inspection:

- The Site was noted to comprise the Yarra Ranges Council offices and public library;
- Multiple buildings were present onsite including Council offices, Lilydale Library, training rooms and toilet blocks;
- The Site and surrounding topography was gently undulating. The Site appeared to slope gently towards the south of the Site. Surface drainage and run off was likely to be directed into designated stormwater drainage system or towards the south of the Site;
- Surfaces were a combination of the following:
 - Unpaved with exposed soil and grass (predominantly in the northern portion of the Site);
 - ➤ Bitumen within car parks and driveways present along the eastern boundary, north eastern corner, and south western corner of the Site; and
 - > Concrete hardstand beneath the buildings and structures.
- No odorous, significantly stained or discoloured soils were observed on the Site surfaces;
- Vegetation on the Site was limited to the boundaries of the Site and exposed grassed areas. Vegetation was not observed to be distressed;
- No visible evidence of underground storage tanks (USTs) or underground infrastructure was observed onsite; and
- Surrounding land uses comprised commercial properties including a car dealership with a garage
 located on the north side of Hardy Street opposite the Site. Two (2) possible vent pipes typical of
 USTs were observed on the workshop building associated with the car dealership. Residential
 properties were observed to the east of the Site and other municipal facilities (car park), tennis
 courts, and Lilydale Bowling Club were observed to the south and west of the Site.

A site features plan has been provided as Figure 2 in the 'Figures' section of this report.

10 Contaminants of Potential Concern

Based on the desktop review, site history review and site inspection conducted for the Site and surrounding properties, the contaminants of potential concern (CoPC) associated with historical and/or current activities at the Site are included in Table 6 below.

Table 6: Potential Sources of Contamination					
Potential Contamination Source	Contaminants of Potential Concern				
Onsite: Imported fill	 Metals; Polycyclic aromatic hydrocarbons (PAH); and Total recoverable hydrocarbons (TRH). 				
Onsite: Historical agricultural/grazing land	Organochlorine Pesticides (OCP); andOrganophosphate Pesticides (OPP).				
Offsite: CFA, service station, vehicle workshop	 Petroleum hydrocarbons (TRH, PAH, benzene, toluene, ethylbenzene, xylenes); and Volatile organic compounds (VOCs). 				
Offsite: Historical agricultural/grazing land	Organochlorine Pesticides (OCP); andOrganophosphate Pesticides (OPP).				

11 Soil Assessment

11.1 Sampling Strategy

On 22-24 March 2016 Prensa collected a total of twenty eight (28) soil samples from seven (7) borehole locations (denoted BH2-BH7 and BH10). Soil boreholes were established in conjunction with geotechnical investigations conducted by GeoAust using a combination of hand sampling equipment (i.e. hand auger) and a drill rig (solid flight auger) with samples retrieved from a maximum depth of 2.0 m bgl.

Approximate borehole locations are depicted on Figure 3 in the 'Figures' section.

Borehole logs are provided as Appendix J of this report.

The geotechnical report has been provided as Appendix N of this report.

11.1.1 Proposed New Building Footprint (northern portion of the Site)

Prensa collected soil samples from four (4) soil borehole locations (denoted as BH2-BH5) established within the approximate footprint of the proposed new building. Borehole locations in this portion of the Site were established in a general gridded pattern (within accessible areas) to supplement and infill data gaps from the previous Connolly (2011) investigation.

The additional four (4) borehole locations in conjunction with the previous works undertaken by Connolly (2011), which included the establishment of seven (7) sampling locations within the current and proposed construction zone, satisfies the minimum sampling density requirements specified in Australian Standard (AS) 4482.1-2005 for an area of this size (approximately 0.3 ha).

11.1.2 Proposed Building Refurbishment (southern portion of the Site)

Prensa collected soil samples from three (3) soil borehole locations (denoted as BH6, BH7 and BH10) within the vicinity of the Anderson Street Main Building and Lilydale Library.

Borehole locations were generally established within accessible areas as close as practicable to the building footings, primarily to assist in the geotechnical investigation of subsidence issues in this portion of the Site and to supplement data obtained from the previous Connolly (2011) investigation. The aim of this part of the DSI was to provide Council with a preliminary indication of the potential for contamination to exist within this area of the Site.

11.2 Soil Sampling

Soil samples were collected from either the drilling auger or from the hand auger, taking care not to sample soils directly adhered to the auger. Soil samples were generally collected from near surface, 0.5 m, 1.0 m and 1.5 m depths (or until rock was encountered or natural soil was adequately penetrated). Additional samples were collected where distinct changes in the soil profile were observed.

Disposable nitrile gloves were worn during sample collection, which were replaced after the collection of each sample and between sampling locations to avoid cross-contamination. Collected soil samples were placed in 250 mL glass jars with Teflon-lined lids that were prepared and supplied by a NATA accredited laboratory. Collected samples were stored in chilled ice chests and transported to the laboratory within specified holding times, along with chain of custody documentation for the analyses described in Section 11.4.

Upon completion of soil sampling, each borehole was backfilled with the excess soil cuttings generated during borehole establishment and concrete/bitumen was reinstated (where applicable).

11.3 Soil Screening

On-site screening of collected soil samples was conducted using a photoionisation detector (PID). The PID was used to conduct a headspace analysis to assess for the presence of volatile organic compounds (VOCs) in soil. The PID was calibrated prior to use with isobutylene gas of a known concentration (100 ppm).

Field observations relating to obvious odours and/or stained or discoloured soil during sampling was also recorded.

11.4 Analytical Schedule

Soil samples collected were analysed for the contaminants specified in Table 7 below.

Table 7: Soil Bore Locations and Analytical Schedule

Borehole Location	Borehole ID	Samples Collected	Samples Analysed	Analysis
Proposed new building footprint, north east corner	BH2	0.2 0.5 1.0 1.5 2.0	0.2 0.5	TRH ⁽¹⁾ , metals (M12) ⁽²⁾ , PAH ⁽³⁾ , OCP ⁽⁴⁾ , OPP ⁽⁵⁾
Proposed new building	вн3	0.3	0.3	TRH, metals (M12), PAH, OCP, OPP
footprint, north west corner		0.5 0.8 1.4	0.5	NEPM 2013 Screen ⁽⁶⁾ , VOC ⁽⁷⁾ , pH, CEC ⁽⁸⁾ , pH (CaCl ₂ extract), sulphate, chloride
Proposed new building footprint, western	BH4	0.33 0.55	0.33	NEPM 2013 Screen, TRH, VOC, pH, CEC, pH (CaCl $_2$ extract), sulphate, chloride
boundary		1.1	0.55	TRH, metals (M12), PAH, OCP, OPP
Proposed new building footprint, south eastern corner	BH5	0.35 0.5	0.35	TRH, metals (M13) ⁽⁹⁾ , PAH, OCP, OPP
come		1.0 1.5 2.0	0.5	TRH, metals (M12), PAH, OCP, OPP
Proposed refurbishment, garden bed outside	вн6	0.2 0.5	0.2	NEPM 2013 Screen, TRH, VOC, pH, CEC, sulphate, chloride
offices north eastern area		1.0 1.3 1.5	0.5	TRH, metals (M12), PAH, OCP, OPP
Proposed refurbishment,	ВН7	0.2	0.2	TRH, metals (M13), PAH, OCP, OPP
garden bed outside offices south eastern area		1.0	0.5	NEPM 2013 Screen, TRH, VOC, pH, sulphate, chloride
Proposed refurbishment,	BH10	0.3	0.3	TRH, metals (M13), PAH, OCP, OPP
car park bay			0.5	TRH, metals (M12), PAH, OCP, OPP

⁽¹⁾ TRH: Total Recoverable Hydrocarbons.

- Polycyclic Aromatic Hydrocarbons (PAH);
- Phenols;
- Organochlorine Pesticides (OCP);
- Acid Herbicides;
- Atrazine;
- Chlorpyrifos;

- Bifenthrin;
- Polychlorinated Biphenyls (PCB);
- Metals including As, Be, B, Cd, Co, Cr, Cu, Ni, Pb, Mn, Hg, Se, and Zn;
- Cr6+; and
- Cyanide.

⁽²⁾ Metals M12: As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Mo, Se, Ag, Sn.

 $^{^{(3)}}$ PAH: Polycyclic Aromatic Hydrocarbons.

⁽⁴⁾ OCP: Organochlorine Pesticide.

⁽⁵⁾ OPP: Organophosphate Pesticide.

 $^{^{(6)}}$ NEPM 2013 Basic Suite screen includes:

⁽⁷⁾ VOC: Volatile Organic Compounds.

⁽⁸⁾ CEC: Cation Exchange Capacity.

 $^{^{(9)}}$ Metals M13: As, Be, B, Cd, Co, Cu, Hg, Pb, Ni, Mn, Se, Zn, Cr6 $^+$.

11.5 Beneficial Uses and Investigation Levels

The State Environment Protection Policy (SEPP) (Prevention and Management of Contamination of Land) 2002 (Land SEPP) outlines the beneficial uses to be protected. The beneficial uses of land listed in the Land SEPP are provided in Table 8 below, which are derived from Table 1 in the SEPP.

Based on the ongoing use of the Site as municipal offices, the relevant beneficial uses requiring protection for a commercial land use setting are displayed in bold underline italics in Table 8 below.

Table 8: Beneficial Uses of the Land							
Beneficial Use	Parks & Reserves	Agricultural	Sensit	ive Use	Recreation/ Open Space	Commercial	Industrial
			High Density	Other			
Maintenance of Ecosystems							
Natural Ecosystems	✓						
Modified Ecosystems	✓	✓		✓	✓		
Highly Modified Ecosystems		✓	✓	✓	✓	<u> </u>	√
Human Health	✓	✓	✓	✓	✓	<u>~</u>	✓
Buildings & Structures	✓	✓	✓	✓	✓	⊻	✓
Aesthetics	✓	✓	✓	✓	✓	<u>~</u>	
Production of Food, Flora & Fibre	✓	✓		✓			

11.6 Adopted Investigation Levels, Screening Levels and Criteria

11.6.1 Investigation Levels

The NEPM 2013 Guidelines provide a range of investigation levels for the protection of ecological health and human health, referred to as ecological investigation levels (EILs) and health investigation levels (HILs), respectively.

The NEPM 2013 Guidelines provide EILs for the protection of terrestrial ecosystems for three (3) generic land use settings as follows:

- Areas of ecological significance (i.e. national parks, state parks, wilderness areas and designated conservation areas);
- Urban residential and public open space; and
- Commercial and industrial land uses.

Site-specific EILs were derived using the National Environment Protection Council's (NEPC) *Ecological Investigation Level Calculation Spreadsheet,* 2010 for aged arsenic, copper, DDT, lead, naphthalene, nickel and zinc, which were based on one (1) soil sample collected from both fill and natural soil at the Site and analysed for physiochemical properties.

The site-specific EIL calculations have been provided in Appendix K.

In the absence of NEPM 2013 EIL guidelines, the Canadian Soil Quality Guidelines (CSQG) (1999-August 2013) ecological values for a commercial land use setting have been adopted, where required. In the absence of CSQG, the ANZECC Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, Investigation B levels (1992) ecological values for a commercial land use setting have been referenced (manganese only).

The NEPM 2013 Guidelines provide HILs for the protection of human health for the following four (4) exposure settings:

- **HIL 'A'** residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), also includes children's day care centres, preschools and primary schools;
- **HIL 'B'** residential with minimal opportunities for soil access includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats;
- **HIL 'C'** public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. It does not include undeveloped public open space (such as urban bushland and reserves) which should be subject to a site-specific assessment where appropriate; and
- HIL 'D' commercial/industrial such as shops, offices, factories and industrial sites.

For the purpose of this assessment and based on the continued commercial use of the Site, the following EILs and HILs have been adopted:

- NEPM EILs for commercial and industrial land use setting; and
- **NEPM HIL 'D'** for the protection of site users based on the proposed ongoing commercial land use setting. NEPM HIL 'D' has also been adopted to assess potential health risks to maintenance workers or construction workers in direct contact with soils at the Site.

11.6.2 Screening Levels

In addition to the investigation levels, the NEPM 2013 Guidelines include Ecological Screening Levels (ESLs) and Health Screening Levels (HSLs) that relate to specific petroleum hydrocarbon contaminants. The ESLs and HSLs utilise the same land use settings as the EILs and HILs.

ESLs for petroleum hydrocarbons are the concentrations above which further appropriate investigation and evaluation will be required. ESLs broadly apply to coarse and fine grained soil types and various land uses and are generally applicable to the top 2 m of soil.

The following ESLs and HSLs were adopted for the purposes of this DSI:

- NEPM ESLs for commercial and industrial land use settings; and
- **NEPM HSL 'D'** for the health of site users based on the ongoing commercial use of the Site as well as future users of the Site (including the health of maintenance/construction workers) through the vapour inhalation exposure pathway.

Based on the texture of the soil encountered during the DSI which comprised a combination of silt and silty clay, ESLs for a fine soil type and HSLs for silt were adopted.

The CRC Care Technical Report No. 10, Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater, 2011 (CRC 2011) provides the framework for conducting petroleum vapour intrusion assessments resulting from contamination of soil and groundwater by petroleum hydrocarbons. The HSL adopted was CRC CARE 'D' HSL for the health of construction workers and future maintenance workers, to assess potential human health risks associated with direct contact.

11.6.3 Management Limits

The analytical results were compared to the 'management limits' for petroleum hydrocarbon compounds outlined in NEPM 2013 Guidelines. These management limits are used to avoid or minimise the following potential effects of petroleum hydrocarbon contamination:

- Formation of observable light non-aqueous phase liquid (LNAPL);
- Fire and explosion hazards;
- Effects on buried infrastructure (i.e. penetration of, or damage to, in-ground services by hydrocarbons); and
- Aesthetics.

In the application of the management limits, consideration must be given to the presence and depth of basements and underground infrastructure and depth to groundwater in order to assess the maximum depth to which the limits apply. In addition, management limits may be less relevant at operating industrial sites with no or limited sensitive receptors.

11.6.4 Buildings and Structures

The Land SEPP (2002) states, "Contamination must not cause the land to be corrosive to or adversely affect the integrity of structures or building materials".

The potential for the condition of soils at the Site to adversely impact upon buildings may include elevated sulphate and chloride concentrations or acidic (low pH) soil conditions which are detrimental to some concrete and steel structures.

Australian Standard 2159 Piling – Design and Installation (AS2159, 2009) has been considered in assessing this beneficial use, in particular the exposure classification for concrete piles in soil.

In addition, the management limits prescribed in Section 11.6.3 have also been considered to assess the potential impacts hydrocarbons may pose to buildings and structures.

11.6.5 Aesthetics

The Land SEPP (2002) states, "Contamination must not cause the land to be offensive to the senses of human beings".

The management limits prescribed in Section 11.6.3 give quantitative investigation levels for hydrocarbons to assess the beneficial use Aesthetics, which has been used in conjunction with field observations. The land is generally considered to be aesthetically acceptable if soils are not distinctly odorous, stained or discoloured, do not contain wastes and is not offensive to human senses.

11.6.6 Off-site Disposal Criteria

For the off-site disposal of soil, analytical results were compared to the criteria specified in the Victoria EPA Industrial Waste Resource Guidelines (IWRG621) *Soil Hazard Categorisation and Management*, June 2009, to provide an indication of the possible off-site disposal classification of soils at the Site, should this be required. Soil is characterised into one (1) of four (4) categories:

- Fill Material;
- Category C (Contaminated Soil);
- Category B (Contaminated Soil); and
- Category A (Contaminated Soil).

Soil classified as Fill Material is not regulated by the Victorian EPA and can be reused on the Site or at other properties, provided that it does not preclude the beneficial uses of the land.

Category C (Contaminated Soil), Category B (Contaminated Soil) and Category A (Contaminated Soil) are prescribed wastes. Prescribed wastes require waste transport certificates and must be transported by an appropriately licenced vehicle. When removed from the Site, Category C (Contaminated Soil) and Category B (Contaminated Soil) must be taken to an appropriately licenced landfill. Category A (Contaminated Soils) cannot be disposed directly to an EPA licenced landfill and are required to be treated either onsite or at a remediation facility prior to being disposed to landfill.

11.6.7 Summary of Adopted Guidelines

The beneficial uses to be protected and the corresponding guidelines adopted in light of the intended ongoing commercial/industrial use of the Site are detailed in Table 9 below.

Table 9: Summary of Adopted Guidelines				
Beneficial Use	Adopted Investigation Level			
Highly Modified Ecosystems	NEPM 2013 EILs (including site-derived EILs) and ESLs (for fine soil type) for commercial/industrial land use setting;			
	Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health in commercial land use settings;			
	ANZECC Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, Investigation B Levels (1992); and			
	Dutch Soil Remediation Circular (2013), Soil intervention values.			
Human Health	NEPM 2013 Guidelines: • HIL 'D' for commercial/industrial land use setting; and • HSL 'D' vapour intrusion for commercial/industrial land use setting (for silt soil type). CRC CARE, Technical Report No. 10. 2011: HSL 'D' for direct contact.			
Buildings & Structures	In accordance with the Land SEPP 2002, "Land that is contaminated with acidic or corrosive substances can degrade concrete structures leading to replacement and/or other costs associated with structure collapse"; NEPM 2013 Guidelines: Management Limits for petroleum hydrocarbon compounds; and Australian Standard AS2159-2009 <i>Piling – Design and Installation</i> .			
Aesthetics	In accordance with the Land SEPP 2002, soil is not 'to be offensive to the senses of human beings'; and NEPM 2013 Guidelines: Management Limits for petroleum hydrocarbon compounds.			

12 Findings

The results of the soil assessment compared to the adopted investigation levels, screening levels, direct contact levels, management limits and off-site disposal criteria are discussed in the subsections below.

Detailed analytical results with comparison to the adopted criteria are provided in Tables 1 and 2 in the 'Tables' section of this report. It should be noted that both Prensa and Connolly data have been collated in Tables 1 and 2.

The chain of custody documentation and NATA accredited laboratory analytical reports are provided as Appendix L and Appendix M respectively of this report.

12.1 Proposed New Building Footprint (northern portion of the Site)

12.1.1 Field Observations

Fill was encountered across this portion of the Site at varying depths between 0.4 and 1.2 m bgl. The lithology of the fill soil profile encountered generally comprised a combination of the following:

- Brown, loose, dry gravelly silt with angular gravels and organic matter;
- Brown/orange stiff, loose, dry medium plasticity clayey silt with decomposed organic matter;
- Light brown to dark grey, very loose, slightly moist clayey gravel (road base gravels); and
- Red-brown, soft, medium dense, slightly moist, low plasticity clayey silt with gravels (road base gravels).

Fill was considered to represent reworked natural soil and was underlain by natural soil that predominantly comprised brown/orange/grey, stiff to very stiff, dry to slightly moist, clay.

No obvious odours or soil staining were noted during sampling which was supported by relatively low PID readings ranging between 0.0 and 0.7 ppm.

12.1.2 Maintenance of Ecosystems

Analytical results reported concentrations of contaminants of concern analysed to be less than the EILs/ESLs adopted for the protection of ecological health in a commercial land use setting, with the exception of one (1) elevated concentration of **manganese** reported in sample BH4_0.33 which was collected from near-surface fill.

12.1.3 Human Health

The reported concentrations of contaminants of concern analysed were less than the HILs and HSLs adopted for the protection of human health in a commercial land use setting.

The reported concentrations of contaminants of concern were also less than the CRC Care HSL adopted to assess potential human health risks associated with direct contact for the protection of health of construction/maintenance workers.

12.1.4 Buildings and Structures

Australian Standard AS2159-2009 $Piling - Design \ and \ Installation$ states that concentrations of sulphate (as S) should be less than 1,670 ppm for the protection of concrete piles in soil. The concentrations of sulphate (as S) reported in on-site soils ranged from 12 - 13 mg/kg and indicate non-aggressive exposure classification for concrete structures in accordance with AS2159-2009.

Reported pH (aqueous extract) levels in on-site soils (range 8-8.4 pH units) indicate non-aggressive exposure classification for concrete and steel structures in contact with soil in accordance with AS2159-2009.

12.1.5 Management Limits

The concentrations of petroleum hydrocarbon contaminants of concern analysed were less than the adopted management limits for a commercial land use setting.

12.1.6 Comparison to Soil Classification Criteria

The analytical results reported concentrations less than the upper limits for Fill Material in accordance with relevant EPA Victoria guidelines, with the following exceptions:

- The concentration of **total PAH** in one (1) near surface sample exceeded the upper limits for Fill Material but was less than the upper limits for Category C (Contaminated Soil);
- The concentration of **nickel** in one (1) near surface sample exceeded the upper limits for Fill Material but was less than the upper limits for Category C (Contaminated Soil); and
- The concentrations of **fluoride** in three (3) samples exceeded the upper limits for Fill Material but were less than the upper limits for Category C (Contaminated Soil).

12.2 Proposed Building Refurbishment (southern portion of the Site)

12.2.1 Field Observations

Fill was encountered across this portion of the Site at varying depths between 0.6 and 1.3 m bgl. The lithology of the fill soil profile encountered generally comprised a combination of the following:

- Brown, very loose, dry to slightly moist, gravelly silt with trace fine to medium sand and organic matter;
- Light brown, medium dense, dry to slightly moist, silt; and
- Brown, loose, dry, gravelly silt with organic matter and road based gravels.

Fill was underlain by natural soil that predominantly comprised brown/orange, stiff, slightly moist, medium plasticity clay or bedrock.

No odours or soil staining were noted during sampling which was supported by relatively low PID readings ranging between 0.0 and 0.5 ppm.

12.2.2 Maintenance of Ecosystems

Analytical results reported concentrations of contaminants of concern analysed to be less than the EILs/ESLs adopted for the protection of ecological health in a commercial land use setting, with the exception of one (1) elevated concentration of **manganese** reported in sample BH10_0.3 which was collected from fill soils.

12.2.3 Human Health

The reported concentrations of contaminants of concern analysed were less than the HILs and HSLs adopted for the protection of human health in a commercial land use setting.

The reported concentrations of contaminants of concern were also less than the CRC Care HSL adopted to assess potential human health risks associated with direct contact for the protection of health of construction/maintenance workers.

12.2.4 Buildings and Structures

Australian Standard AS2159-2009 *Piling – Design and Installation* states that concentrations of sulphate (as S) should be less than 1,670 ppm. The concentrations of sulphate (as S) reported in onsite soils ranged from <10 - 15 mg/kg and indicate non-aggressive exposure classification for concrete and steel structures in accordance with AS2159-2009.

Reported pH (aqueous extract) levels in on-site soils (range 6.7 - 7.9 pH units) indicate non-aggressive exposure classification for concrete and steel structures in contact with soil in accordance with AS2159-2009.

12.2.5 Management Limits

The concentrations of petroleum hydrocarbon contaminants of concern were less than the adopted management limits for a commercial land use setting.

12.2.6 Comparison to Soil Classification Criteria

The analytical results reported concentrations less than the upper limits for Fill Material in accordance with relevant EPAV guidelines, with the following exceptions:

- The concentrations of **nickel** in two (2) near surface samples exceeded the upper limits for Fill Material but were less than the upper limits for Category C (Contaminated Soil); and
- The concentration of **fluoride** in one (1) sample exceeded the upper limits for Fill Material but was less than the upper limits for Category C (Contaminated Soil).

13 Quality Control/Quality Assurance

13.1 Quality Control Samples

Quality control samples were collected during the sampling event in accordance with Australian Standard 4482.1-2005. The Standard lists a requirement to collect the following quality control samples during each soil assessment:

- Blind replicate sample (one per 20 samples analysed);
- Split sample (one per 20 samples analysed);
- Rinsate (one per piece of equipment per day);
- Field blank (one per day); and
- Trip blank (one per ice chest).

All sampling, decontamination and storage works were conducted in accordance with the Prensa Environmental Work Instructions.

13.1.1 Blind Replicates and Split Samples

Blind replicate and split samples were collected to assess whether the analytical results were acceptable. Relative Percentage Differences (RPDs) were calculated for each of the quality control samples analysed. RPDs are calculated by dividing the difference between the primary sample and quality control sample by the average of the two, as shown below:

RPD =
$$\frac{(X_1 - X_2)}{(X_1 + X_2)/2}$$
 x 100%

Where X_1 = Primary sample result

X₂ = Replicate sample result

One (1) blind replicate and one (1) split sample were collected from one (1) primary sample, as outlined in Table 10 on the following page.

Table 10: Blind Replicate and Split Sample

Primary Sample	Blind Replicate	Split Sample	Analysis
19476_BH2_0.2	19476_QC1	19476_QC2	Metals (M13), TRH, PAH

The results for the blind and split replicate analysis are provided in Table 11 below.

Detailed results of the blind replicate and split samples are provided in Table 3 of the 'Tables' section of this report.

Table 11: Blind and Split Replicate Analysis

Quality Control Sample	Primary Sample	Results
19476_QC1	19476_BH2_0.2	The RPDs reported were within the 30-50% range recommended in AS4482.1-2005.
19476_QC2	19476_BH2_0.2	The RPDs reported were generally within the 30-50% range recommended in AS4482.1-2005 with the exception of arsenic (+72%) and benzo(a)pyrene TEQ (+82%).

Prensa noted that the majority of the analytical results for primary and duplicate samples were reported less than the laboratory limit of reporting (LOR), whereby RPDs cannot be calculated. The elevated RPDs are considered likely to be associated with the heterogeneous nature of the fill soil profile from which these samples were collected. Furthermore, individual analytical results report for arsenic and benzo(a)pyrene as TEQ were below the respective ecological and health criterion.

Based on the blind replicate and split sample analytical results, the laboratory methods adopted were considered to be appropriate and the results acceptable.

13.1.2 Blank Samples

Rinsate, field blank and trip blank samples were collected during the soil assessment, as outlined in Table 12 below. Detailed results of the blank samples collected are provided in Table 4 of the 'Tables' section of this report.

Table 12: Blank Sampling Schedule

Туре	Sample ID	Date	Analysis	Results
Field Blank	19476_FB1	09/02/2016	N/A#	On hold.
Trip Blank	19476_TB1	09/02/2016	TRH (C ₆ -C ₉)	Concentrations less than LOR*.
Rinsate	19476_R1	09/02/2016	Metals (M13), TRH, PAH	Concentrations less than LOR.

^{*}LOR - Limit of reporting

Based on the results of the blank samples, the potential for cross-contamination appeared to be negligible and the results were considered to be acceptable.

13.2 Laboratory Quality Control/Quality Assurance

Within the laboratory the following QC samples and methods are routinely processed to assure the quality of reported results:

• Duplicates – A second piece of analysis from the same sample and reported in the same units as the result to show comparison;

[#]N/A - Not applicable

- Spike Addition of an analyte to a sample and reported as percentage recovery. The recovery must lie between 70-130% or 30-130% for phenols;
- Relative Percentage Difference (RPD) Between two duplicates. Results are acceptable if they
 are less than ten times the laboratory's LOR or if the results are between ten to twenty times
 the LOR, the RPD must lie between 0-50%;
- Method Blanks Performed on laboratory certified sands (solids) and deionised water (water).
 Method blanks are not to exceed the laboratory's LOR;
- Laboratory Control Samples (LCS) Reported as per cent recovery. Recoveries must lie between 70-130% or 30-130% for phenols;
- Certified Reference Material (CRM) use an analyte of known concentration and reported as percent recovery. Recoveries must lie between 70-130% or 30-130% for phenols; and
- Surrogates added to all samples where appropriate and reported as a percentage recovery. Recoveries must lie between 50-150% or 20-130% for phenols.

Review of the NATA analytical reports prepared by the primary and secondary laboratories indicated that the parameters outlined above were generally met, with the exception of one (1) internal laboratory duplicate RPD reported for volatile organic compounds (1,1-dichloroethene) (Eurofins report #494396-S). It was noted that the duplicate results were considered to pass the laboratory internal acceptance criteria.

Based on the reported laboratory quality control samples and methods used, the results are considered to be acceptable.

13.2.1 Holding Time Compliance

An evaluation of the laboratory sample extraction and analysis dates was undertaken by Prensa. The review of the NATA laboratory reports indicated samples were extracted and analysed with recommended holding times adopted by the laboratory and prescribed in AS 4482.1-2005.

14 Discussion

14.1 Desktop Review and Site Inspection

Based on the site history review, it is understood that the Site was originally vacant land (possibly used for agricultural/grazing purposes) before it was first developed as Yarra Ranges Council circa 1962. Based on the information reviewed it is considered likely that the existing Municipal Offices (comprising the Anderson Street Main Building, Civic Space and Contact Centre/public amenities building) were constructed circa 1962. Information provided by RHSV suggested that from 1966 the Site had been used by the 'Lilydale Shire Offices'. Prior to occupying the Site, the 'Shire Offices' had been located on the corner of Chapel Street and Castella Street, Lilydale. Buildings and structures were progressively added to the original Anderson Street Main Building and Civic Space and by 1991 the layout of the permanent buildings was generally consistent with the current layout.

Surrounding historical land uses included vacant agricultural land (to the south and west), subsequently Council land and public open space (i.e. tennis courts, Lilydale Bowling Club) and Lilydale Quarry. Residential properties were observed to the east of the Site and had been a residential estate since circa 1887. Properties to the north of the Site comprised a combination of residential and commercial properties.

14.2 Impacts on Beneficial Uses

14.2.1 Maintenance of Ecosystems

Reported analyte concentrations were less than the EILs/ESLs adopted for the protection of ecological health in a commercial land use setting, with the exception of two (2) elevated concentrations of **manganese** reported in sample BH4_0.33 and BH10_0.3 which were collected from near-surface fill. Due to the presence of basaltic gravels and crushed rock noted within the surface soils of BH4 and BH10, the elevated concentrations of manganese were considered to be associated with inherently raised concentrations within the basaltic gravels and not representative of contamination. Based on the current and proposed use of the Site, it is considered unlikely that the elevated concentrations pose a significant ecological risk to the highly modified ecosystems present onsite.

14.2.2 Human Health

There were no exceedances of the adopted HILs, HSLs and CRC CARE HSL for the protection of human health (including future construction workers, maintenance workers and users of the Site) in a commercial land use setting.

14.2.3 Management Limits

The concentrations of petroleum hydrocarbon contaminants of concern analysed were less than the adopted management limits for a commercial land use setting.

14.2.4 Buildings and Structures

Australian Standard AS2159-2009 *Piling – Design and Installation* states that concentrations of sulphate (as S) should be less than 1,670 ppm. The concentrations of sulphate (as S) reported in onsite soils ranged from <10 - 15 mg/kg and indicate non-aggressive exposure classification for concrete structures in soil in accordance with AS2159-2009.

Reported pH (aqueous extract) levels in on-site soils were generally alkaline and in the range of 6.7 – 8.4 pH units which in accordance with AS2159-2009, indicate non-aggressive exposure classification for concrete and steel structures in contact with soil.

In addition, given the location of the Site, nature of the local geology and review of Australian Soil Resource Information System (ASRIS) website, it is considered unlikely that acid sulphate soil conditions would be encountered at the Site.

14.2.5 Aesthetics

During the soil assessment, the fill and natural soils observed were generally free from waste with the exception of minor quantities of brick fragments observed within BH6 at an approximate depth of 0.5 m bgl. Soils at the Site were not odorous and no staining or discolouration was observed. The identified brick fragments are not considered to represent an aesthetic concern to the ongoing commercial use of the Site. Fill and natural soils at the locations assessed are not considered to represent an aesthetic concern to the ongoing commercial use of the Site.

14.3 Off-Site Disposal Classification

Analytical results (reported by Prensa and Connolly) were compared to the EPA Victoria Publication IWRG621 (2009) soil hazard categorisation criteria to classify the in-situ soil for off-site disposal purposes.

Analytical results reported (by Prensa and Connolly) identified analyte concentrations were less than the 'Fill Material' threshold criteria in accordance with EPA Victoria Publication IWRG621 (2009), with the exception of total PAH, nickel and fluoride.

A single elevated total PAH concentration was reported during the previous Connolly (2011) assessment which was considered by Connolly to be associated with asphalt fragments in the collected sample and not representative of contamination. PAHs were not detected at elevated concentrations during the current Prensa DSI.

Elevated nickel previously reported in near surface (fill) samples exceeding the upper limits for Fill Material was considered by Connolly to be attributed to the naturally elevated concentrations that can be present within basaltic gravels (associated with the crushed rock fill surface layer).

Elevated fluoride reported in natural soil during the previous Connolly (2011) assessment was considered to be associated with naturally occurring concentrations.

Based on the results and observations of the Site soil profile made during the current soil investigation, Prensa is in agreement with these aforementioned conclusions.

The total dataset of soil samples collected and analysed as part of the assessment satisfies the minimum sample frequency of one (1) sample per 250 m³ specified in Table 3 of Victorian EPA Publication IWRG702 (2009) for soil classification using the 95% upper confidence level. This sample frequency is relevant for a soil volume of up to 5,000 m³.

Based on the analytical results, the fill and natural soils within the areas assessed are classified as **Fill Material** for off-site disposal purposes. This classification allows for a total volume of up to 5,000 m³ of soil generated during future construction, refurbishment and/or maintenance works on the Site to be disposed off-site in accordance with EPA IWRG. Should additional soil volumes require off-site disposal, further sampling and analysis may be required. Given the naturally elevated concentrations of nickel and fluoride, the soils should not be used for a sensitive use. The soils can

be disposed to landfill (as Fill Material) or used within a non-sensitive use development (i.e. commercial/industrial).

15 Conclusion

Prensa Pty Ltd (Prensa) was engaged by Yarra Ranges Council (Council) to conduct a Detailed Site Investigation (DSI) of the property located at 15 Anderson Street, Lilydale Victoria (the Site).

At the time of the DSI, the Site was occupied by Council municipal offices and Lilydale public library. Based on information provided by Council, it is understood that the existing Civic Space building and the Contact Centre and public amenities building located in the northern portion of the Site are proposed to be demolished to allow for the construction of a new single or two-level structure for municipal office use. Furthermore, it is also understood that the existing Anderson Street Main Building and adjoining Lilydale Library building are proposed to be fully refurbished in the future without changes to the existing structural footprint.

Council requested Prensa undertake a DSI and Geotechnical Investigation at the Site to infill data gaps in previous environmental assessment and geotechnical investigations undertaken at the Site and to identify the potential for contamination that could represent a potential health risk to construction workers and future users of the Site as a commercial facility.

Council also requested Prensa undertake an intrusive soil assessment and geotechnical investigation in the vicinity of the existing Anderson Street Main Building and Library to investigate slope instability and subsidence issues and to assess the potential for soil contamination in this portion of the Site.

The geotechnical investigation was undertaken by GeoAust Geotechnical Engineers Pty Ltd (GeoAust) in conjunction with the soil sampling component of the DSI. The geotechnical report has been issued as a separate report.

To satisfy Council requirements, the objectives of this DSI were to:

- Identify the potential for contamination to exist as a result of current and/or historical land use activities, which could represent a potential health risk to construction workers and future users of the Site based on the proposed commercial use of the Site;
- Confirm the soil classification for potential future offsite disposal purposes in accordance with relevant EPA guidelines; and
- Recommend any further assessment works or remediation works for any identified contaminated areas, if required.

Current and Historic Land Uses

Based on the site history review, it is understood that the Site was originally vacant land (possibly used for agricultural/grazing purposes) before it was first developed as Yarra Ranges Council circa 1962. The original building was constructed circa 1962 and comprised the Anderson Street Main Building and Civic Space. Additional buildings and structures were progressively added to the original building and by 1991 the layout of the site buildings was generally consistent with the current layout.

Surrounding historical land uses included vacant agricultural land to the south and west, with other areas comprising public open space, a quarry and residential properties.

Summary of Previous Environmental Works

A previous Soil Investigation in conjunction with a Geotechnical Site Investigation was completed at the Site by Connolly Environmental (Connolly) in 2011 for the purposes of characterising in-situ soils for off-site disposal purposes and providing foundation recommendations for a proposed new building in the northern portion of the Site. The Connolly (2011) assessment involved soil sampling from a total of ten (10) soil bores established within the northern portion of the Site and also targeted the Lilydale Library.

The results of the Connolly (2011) soil investigation reported an isolated elevated concentration of total polycyclic aromatic hydrocarbons (total PAH) and elevated background concentrations of nickel and fluoride. The reported total PAH concentration was considered to be associated with asphalt fragments in the sample and not representative of contamination. Fill and natural soils on site were classified as 'Fill Material' in accordance with EPA Victoria Publication IWRG621 (2009) for off-site disposal purposes. Due to naturally elevated nickel and fluoride concentrations, Connolly noted that the soil 'should not be used for a sensitive use'.

Impact Upon Beneficial Uses

Analytical results from the current DSI and previous Connolly (2011) soil investigation were compared to relevant ecological and health-based criteria for the proposed ongoing commercial land use of the Site. The analytical results were reported to be less than the adopted investigation and screening levels for the protection of human health (including future construction/maintenance workers) in a commercial land use setting at the locations assessed.

Furthermore, the analytical results reported were less than the adopted ecological investigation and screening levels for commercial land use at the locations assessed, with the exception of manganese reported in two (2) near surface samples. Due to the presence of basaltic gravels and crushed rock (road base) noted within the surface of BH4 and BH10, the elevated concentrations of manganese were considered likely to be representative of inherently raised concentrations associated with the basaltic gravels and not representative of contamination. Based on the current and proposed ongoing commercial use of the Site, it is considered unlikely that the reported manganese concentrations will pose a significant ecological risk to the highly modified ecosystems present onsite.

Reported pH, sulphate and chloride concentrations were below levels considered to be potentially aggressive towards concrete and/or steel structures at the locations assessed.

Fill and natural soils at the locations assessed are not considered to represent an aesthetic concern to the ongoing commercial use of the Site.

Off-Site Disposal Classification

Analytical results reported (by Prensa and Connolly) identified analyte concentrations less than the 'Fill Material' threshold criteria in accordance with EPA Victoria Publication IWRG621 (2009) guidelines, with the exception of total PAH, nickel and fluoride.

A single elevated total PAH concentration was reported during the previous Connolly (2011) assessment which was considered by Connolly to be associated with asphalt fragments within the collected sample and not representative of contamination.

Similarly raised concentrations of nickel were reported in near-surface soil during the Prensa assessment and are considered associated with the presence of basaltic gravels within the soil profile.

Elevated fluoride reported in natural soil during the previous Connolly (2011) assessment was considered to be associated with naturally occurring concentrations.

Based on the analytical results, the fill and natural soils within the areas assessed are classified as **Fill Material** for off-site disposal purposes.

This classification allows for a total volume of up to 5,000 m³ of soil generated during future construction, refurbishment and/or maintenance works on the Site to be disposed off-site in accordance with EPA Industrial Waste Resource Guidelines. Should additional soil volumes require off-site disposal, further sampling and analysis may be required.

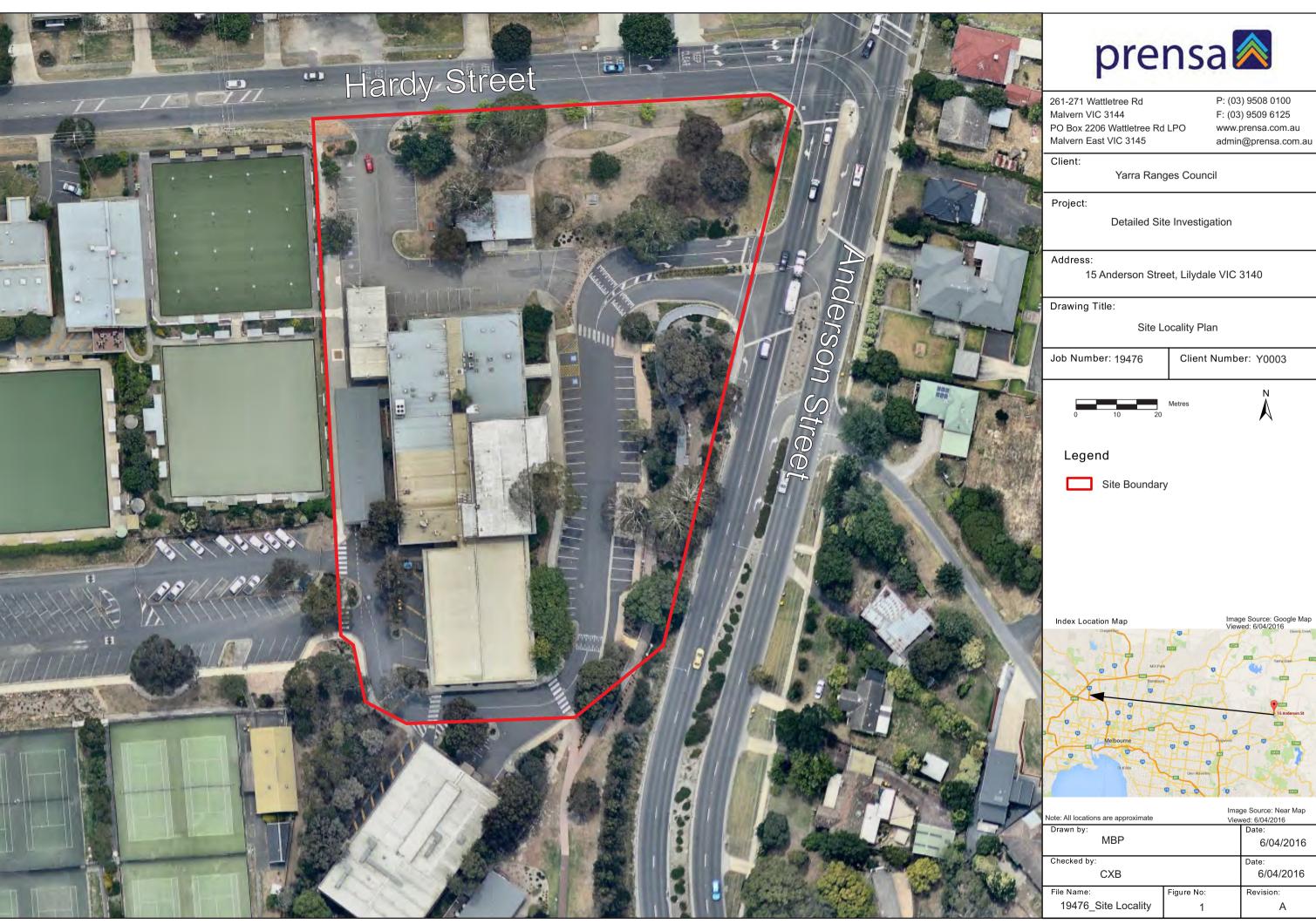
Additional Assessment and/or Remediation

The findings of this DSI suggest that it is not considered necessary for further assessment and/or remediation to be undertaken at the Site.

16 Recommendations

Based on the above findings the following recommendation has been provided:

• The presence of existing buildings on the Site prevented assessment of subsurface conditions across the Site. Should subsurface conditions inconsistent with those described in this report be encountered during future construction, refurbishment and/or maintenance works, advice should be sought from an environmental consultant.


Abbreviations

Abbreviation	Definition
AHD	Australian Height Datum
AMG	Australian Map Grid
ANZECC	Australian & New Zealand Environment & Conservation Council
BaP	Benzo(a)pyrene
BGL	Below Ground Level
ВН	Borehole
DEPI	Department of Environment and Primary Industries
DSI	Detailed Site Investigation
EPA	Environment Protection Authority
ESA	Environmental Site Assessment
m	Metres
m ²	Metres squared (area)
MGA	Map Grid Australia
mg/L	Milligrams per Litre
MMBW	Melbourne Metropolitan Board of Works
NATA	National Association of Testing Authorities
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
ОСР	Organochlorine Pesticides
PAH	Polycyclic Aromatic Hydrocarbons
PPM	Parts Per Million
PSI	Preliminary Site Investigation
RHSV	Royal Historical Society of Victoria
SEPP	State Environment Protection Policy
SVOC	Semi-volatile Organic Compounds
SWL	Standing Water Level
TEQ	Toxic Equivalency Quotient
TDS	Total Dissolved Solids
TRH	Total Recoverable Hydrocarbons
VOC	Volatile Organic Compounds
VVG	Visualising Victoria's Groundwater

Figures

261-271 Wattletree Rd Malvern VIC 3144

PO Box 2206 Wattletree Rd LPO Malvern East VIC 3145

P: (03) 9508 0100 F: (03) 9509 6125 www.prensa.com.au admin@prensa.com.au

Yarra Ranges Council

Detailed Site Investigation

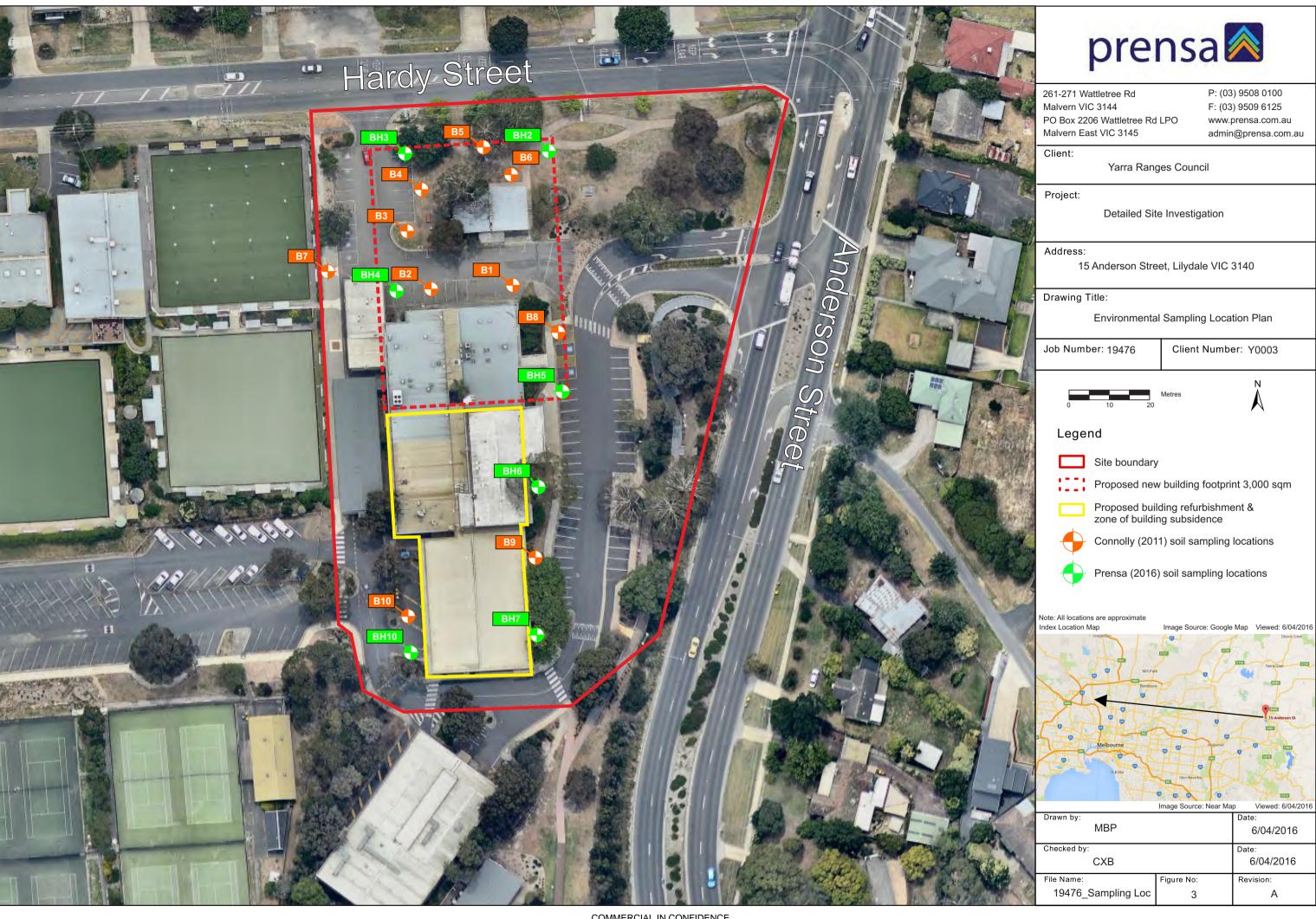
Address:

15 Anderson Street, Lilydale, Victoria

Drawing Title:

Site Features

Job Number: 19476


Client Number: Y0003

Note: All locations are approximate

Image Source: Near Map Viewed: 12 January 2016

6	Drawn by:		Date:
ē	MBP		11/04/2016
ä	Checked by:		Date:
Į	CXB		11/04/2016
ä	File Name:	Figure No:	Revision:
ă	19476_Site Features	2	Α

Tables

NEPM 2013 ESLs for Cor NEPM 2013 HIL D for Co NEPM 2013 HSL D for Co O-1m 1-2m 2-4m 2-4m rect Contact CRC Care Direct Contact AS 2159 Piling - Design	Sample Date	dustrial, Fine Soils dustrial dustrial dustrial silt Soils rcial/Industrial silt Soils rcial/Industrial silt Soils commercial/Industrial, Fine Soils Date Matrix Description 111 Fill	160	8 ⁽⁵⁾	10	0.4 22 ⁽⁵⁾	1 1.4 ⁽⁵⁾	7 (II+VI)	5 5		Wanga nese	g Mg/kgm g	Molybdenum	la.	un			vity (1:5 aqueous extract)		ree)	Content (dried @ 103°C)	hange Capacity	nus extract)	CaCl2 extract	as S			9	PHTHALENE	G - C14		-C36	-C10 - C36 (Sum of total)
Intenance of Ecosystems	for Commercial/Industrial for Commercial/Industrial for Commercial/Industrial ontact for Commercial/Industrial ontact for Commercial/Industrial esign and installation [205 gement Limits for Commercial/Industrial Sample Date RRTION OF SITE [13] [28/11/2011 28/11/2011	dustrial, Fine Soils dustrial dustrial dustrial silt Soils rcial/Industrial silt Soils rcial/Industrial silt Soils commercial/Industrial, Fine Soils Date Matrix Description 111 Fill	2 160	8 ⁽⁵⁾	10	0.4 22 ⁽⁵⁾	1 1.4 ⁽⁵⁾	5	5 5			a ma/ka		亨	Selen	Silver	E Z	Conductiv	Chloride	Cyanide (Fr	Moisture C	Cation Exc	pH (a quec	рн (гаb) С	Sulphate	C10-C16	C16-C34	C34-C4	F2-NA	- 8	8 8	63	Ÿ
NEPM 2013 ELIS for Con- NEPM 2013 ELIS for Con- NEPM 2013 ELIS for Con- NEPM 2013 HILD Jor Cc NEPM 2013 Manageme Do Assessor Do Assessor Do Assessor Do Connolly Press Connolly	for Commercial/Industrial for Commercial/Industrial for Commercial/Industrial ontact for Commercial/Industrial ontact for Commercial/Industrial esign and installation [205 gement Limits for Commercial/Industrial Sample Date RRTION OF SITE [13] [28/11/2011 28/11/2011	dustrial, Fine Soils dustrial dustrial dustrial silt Soils rcial/Industrial silt Soils rcial/Industrial silt Soils commercial/Industrial, Fine Soils Date Matrix Description 111 Fill	160	8 ⁽⁵⁾		22 ⁽⁵⁾	1.4 ⁽⁵⁾			5 5					mg/kg		/kg mg/			mg/kg				pH_Units			mg/kg			ig/kg mg/k			mg/kg
NEPM 2013 ESLs for Corn	for Commercial/Industrial for Commercial/Industrial for Commercial/Industrial ontact for Commercial/Industrial ontact for Commercial/Industrial esign and installation [205 gement Limits for Commercial/Industrial Sample Date RRTION OF SITE [13] [28/11/2011 28/11/2011	dustrial, Fine Soils dustrial dustrial dustrial silt Soils rcial/Industrial silt Soils rcial/Industrial silt Soils commercial/Industrial, Fine Soils Date Matrix Description 111 Fill						8/ 3		10(3) 100						5 40 ⁽⁵⁾ 3			5	5	1	0.5	0.1	0.1	10	50	100	100	50 2	20 20	0 50		5000 ⁽⁴⁾
In Health NEPM 2013 HIL D for Co NEPM 2013 HIL D for Co O-1m	for Commercial/Industrial of for Commercial/Industrial ontact for Commercial/Industrial esign and Installation (2009 gement Limits for Commer Sample Date RTION OF SITE [13] 28/11/2011 28/11/2011	ndustrial ndustrial, Silt Soils rcial/Industrial ion (2009) Commercial/Industrial, Fine Soils Date Matrix Description Dill Fill	3000	500	300000	900	2000		300 3301	310** 180	500	24**	40'''	600 420**	2.9**	40'" 3	017 1500 1	000'*'									2500	6600 1	170		_		5000
1-2m	esign and Installation (2009) gement Limits for Commer Sample Date ORTION OF SITE) (1) 28/11/2011 28/11/2011	ion (2009) Commercial/Industrial, Fine Soils Date Matrix Description					3000	4	4000 240	000 150	60000	0 730		6000	10000		4000	00		1500							2300		NI NI				
SAm	esign and Installation (2009) gement Limits for Commer Sample Date ORTION OF SITE) (1) 28/11/2011 28/11/2011	ion (2009) Commercial/Industrial, Fine Soils Date Matrix Description																											NL			1	
tt Contact GRC Care Direct Care Dire	esign and Installation (2009) gement Limits for Commer Sample Date ORTION OF SITE) (1) 28/11/2011 28/11/2011	ion (2009) Commercial/Industrial, Fine Soils Date Matrix Description																											NL				
AS 2159 Piling - Design	esign and Installation (2009) gement Limits for Commer Sample Date ORTION OF SITE) (1) 28/11/2011 28/11/2011	ion (2009) Commercial/Industrial, Fine Soils Date Matrix Description																								20000	27000		NL				
NEPM 2013 Management Limits	Sample Date Sample Date ORTION OF SITE) ⁽¹⁾ 28/11/2011 28/11/2011	Commercial/Industrial, Fine Soils Date Matrix Description 111 Fill																	6000				<5.5		1670	20000	2/000	38000	-	$\overline{}$	_	_	
d ID Assessor POSED NEW BUILDING FOOTPRINT (NORTHERN PORTION 0.2 Connolly 1.5 Connolly 0.5 Connolly 1.5 Connolly 1.5 Connolly 1.5 Connolly 1.6 Connolly 1.7 Connolly 1.8 Connolly 1.9 Connolly 1.9 Connolly 1.9 Connolly 1.0 Connolly 1.1 Connolly 1.1 Connolly 1.2 Connolly 1.3 Connolly 1.4 Connolly 1.5 Connolly 1.6 Connolly 1.7 Connolly 1.8 Connolly 1.9 Conn	Sample Date ORTION OF SITE) ⁽¹⁾ 28/11/2011 28/11/2011	Date Matrix Description	_															_	5000				<u>\J.3</u>	$\overline{}$		1000	5000	10000	+	$\overline{}$	+-	$\overline{}$	
	28/11/2011 28/11/2011	011 Fill				-				'								-															
.2 Connolly .5 Connolly .5 Connolly .2 Connolly .5 Connolly .5 Connolly .5 Connolly .5 Connolly .5 Connolly .5 Connolly .6 Connolly .6 Connolly .7 Connolly .8 Connolly .8 Connolly .9 Prensa .9 BH2 .0 Prensa .6 BH3 .0 Prensa .6 BH4 .0 Prensa .6 BH4 .0 Prensa .6 BH3 .0 Prensa .6 BH3 .0 Prensa .6 BH4 .0 Prensa .6 BH3 .0 Prensa .6 BH4 .0 Prensa .6 BH4 .0 Prensa .6 BH5 .0 Connolly .7 Connolly .9 Connolly	28/11/2011 28/11/2011	011 Fill																															
0 Connolly 5 Connolly 2 Connolly 5 Connolly 5 Connolly 5 Connolly 6 Connolly 6 Connolly 7 Connolly 7 Connolly 7 Connolly 8 Connolly 8 Connolly 9 Prensa 6 BH3 0.3 Prensa 6 BH3 0.3 Prensa 6 BH3 0.3 Prensa 6 BH3 0.3 Prensa 6 BH3 0.5 Prensa 6 BH3 0.5 Prensa 6 BH4 0.55 Prensa 6 BH4 0.55 Prensa 6 BH5 0.5 Prensa	28/11/2011		8	-	- 1	<0.2	-	24	- 6	5 9	-	<0.05	-	12	-	-	- 20	-	-	-	-	-	-	- 1	-	-	- 1	- 1	- <	<20 45		71	386
1.2 Connolly	28/11/2011		<5	-	-	<0.2	-	15		5 12	-	0.05	-	<5	-	-	- 5		-	-	-	-	-		-	-	-	-		<20 <20		<50	ND
.5 Connolly .5 Connolly .2 Connolly .5 Connolly .6 Connolly .6 Connolly .7 Connolly .8 Connolly .8 Connolly .9 Connolly .9 Connolly .9 Connolly .9 Connolly .9 Connolly .6 Connolly .7 Connolly .8 Connolly .9 Connolly				-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-		-	-	-
.5 Connolly .2 Connolly .3 Connolly .5 Connolly .5 Connolly .5 Connolly .4 Connolly .4 Connolly .5 Connolly .5 Connolly .5 Connolly .5 Connolly .5 Connolly .6 Connolly .6 Connolly .7 Connolly .8 Connolly .9 Connolly .9 Connolly .1 Connolly .1 Connolly .2 Connolly .2 Connolly .2 Connolly .5 Connolly .6 Connolly .6 BH2 .0 Prensa .6 BH3 .0 Prensa .6 BH3 .0 Prensa .6 BH3 .0 Prensa .6 BH4 .0 Prensa .6 BH4 .0 Prensa .6 BH4 .0 Prensa .6 BH5 .0 Connolly .7 Connolly .8 CONNOLLY CONNOLLY .8	28/11/2011		<5		-	0.4	-	5		5 8	_	<0.05	-	<5	-	-	- 36		-	-	-	-	-		-	-	-	-	- <	<20 <20	0 <50	<50	ND
1.2 Connolly	28/11/2011 28/11/2011		<5 E	-	-	<0.2	-	9		5 15 5 15		<0.05 0.05	-	<5 <5	-	-	- <		-	-	-	-	-			-			-	<20 <20	10 <50	<50	ND.
LO	28/11/2011		<5	-		<0.2		38		9 6		<0.05		100	-	-	- 52		-		-								-		- 30		- IND
1.5 Connolly	28/11/2011		<5		-	<0.2	-	9		5 12		<0.05	-	<5	-	-	. <		-	-	-	-	-	-	-	-	-	-	-		-	-	
1.4 Connolly	28/11/2011	011 Natural	-	-	-	-	-	-			-	-	-	-	-	-	. -	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
	28/11/2011		<5	-	-	<0.2	-	8		5 22		0.07	-	7	-	-	- 18		-	-	-	-	-	-	-	-	-	-	-		-	-	-
1.1.5 Connolly	28/11/2011 28/11/2011		- 5 - <5	-	-	<0.2	<1	-		5 20 5 29		0.05	<5 <5	<5 <5	10		5 11		-	-	-	-	-		-	-	-	-		<20 <20 <20 <20		<50 <50	ND ND
	28/11/2011		<5	-	-	<0.2	<1	19		5 18		<0.05		<5	- 3	<5	- <		-	-	-								-	20 <20	J <50	<50	ND -
/I.0 Connolly /I.5 Connolly /I.6 BH2_0.2 Prensa /I.6 BH2_0.5 Prensa /I.6 BH3_0.3 Prensa /I.6 BH3_0.3 Prensa /I.6 BH3_0.5 Prensa /I.6 BH5_0.5 Prensa /I.6 BH5_0.5 Prensa /I.6 BH5_0.5 Connolly /I.1 Connolly /I.5 Connolly /I.1 Connolly	28/11/2011		<5		-	<0.2	-	6		5 10		<0.05	-	<5	-	-	- 24		-	-	-	-	-	-	-	-	-	-	-		-	-	-
1.1.5 Connolly	28/11/2011	011 Fill	<5	-	-	<0.2	-	9		5 11	-	<0.05	-	<5	-	-	- 14		-	-	-	-	-	-	-	-	-	-	-		-	-	-
	28/11/2011		<5	-	-	<0.2	-	11	- <	5 12	-	<0.05	-	<5	-	-	. <		-	-	-	-	-	-	-	-	-	-	-		-	-	-
	28/11/2011		+ :-	-	-	-	-	-		-	-	-	-	-	-	-			-	-	-		-	-	-	-	-		-				
\(\frac{1.5}{1.6} \) Connolly \(\frac{476_BH2_0.2}{1.6} \) Prensa \(\frac{476_BH2_0.5}{1.6} \) Prensa \(\frac{476_BH3_0.3}{1.6} \) Prensa \(\frac{476_BH3_0.3}{1.6} \) Prensa \(\frac{476_BH3_0.5}{1.6} \) Prensa \(\frac{476_BH4_0.33}{1.6} \) Prensa \(\frac{476_BH4_0.35}{1.6} \) Prensa \(\frac{476_BH4_0.35}{1.6} \) Prensa \(\frac{476_BH5_0.5}{1.6} \) \(28/11/2011 28/11/2011		<5 <5	-		<0.2	-:-	8		5 33 5 14		<0.05 <0.05		<5 <5	-	-	- 29		-	-	-								-		+:		
476_BH2_0.2 Pensa 476_BH2_0.5 Prensa 476_BH3_0.5 Prensa 476_BH5_0.35 Prensa 476_BH5_0.35 Prensa 476_BH5_0.5 Connolly 476_BH5_0.5 Connolly 476_D.2 C	28/11/2011		1 .	-	-		-	-			-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-		-	-	
476_BH3_0.3 Prensa 476_BH3_0.5 Prensa 476_BH4_0.33 Prensa 476_BH4_0.55 Prensa 476_BH4_0.55 Prensa 476_BH5_0.35 Prensa 476_BH5_0.35 Prensa 476_BH5_0.5 Prensa 476_BH5_0.5 Prensa 476_BH5_0.5 Connolly 40.5 Connolly 40.5 Connolly 40.5 Connolly 40.5 Connolly 40.5 Connolly 40.6 Connolly 40.6 Connolly 40.7 Connolly	23/03/2016		8.5	-	-	<0.4	-	8.7	- 5	6 29	-	<0.1	<10	7.5	<2	<5	10 27	-	-	-	8.8	-	-	-	-	<50	<100	<100 <	<50 <	<20 <20	.0 <50	<50	<50
176_BH3_0.5 Prensa	23/03/2016		7.3	-	-	<0.4	-	17		7 9.3	-	<0.1	<10	9	<2		10 20	-	-	-	10	-	-	-	-					<20 <20		<50	<50
476_BH4_0.33 Prensa 476_BH3_0.35 Prensa 476_BH5_0.35 Prensa 476_BH5_0.5 Prensa 970SED BUILDING REFURBISHMENT (SOUTHERN PORTION /0.2 Connolly /1.5 Connolly /1.5 Connolly /1.5 Connolly /0.2 Connolly /0.2 Connolly /0.1 Connolly	22/03/2016		17		-	<0.4	-	<5		5 <5		<0.1	<10	<5	<2	<5	10 15		-	-	4.5	-	-		-					<20 <20		<50	<50
476_BH4_0.55 Prensa 476_BH5_0.35 Prensa 476_BH5_0.5 Prensa OPOSED BUILDING REFURBISHMENT (SOUTHERN PORTION 10.2½°) Connolly (0.5 Connolly /1.0 Connolly /1.5 Connolly 0/0.2 Connolly 0/1.2 Connolly 0/1.2 Connolly 0/1.2 Connolly	22/03/2016 23/03/2016		12	<2	<10 <10	<0.4	<1			9 16			-	12 57	<2	-	. 13			<5	15 14	17	8	7.5	12	<50 <50				<20 <20		<50 <50	<50 <50
476_BHS_0.35	23/03/2016		17		- <10	<0.4	<1			8 12 5 15			<10	5.7	<2		10 10	100	- 1/	<5	27	29	8.4	7.6	13					<20 <20 <20 <20		<50	<50
476_BHS_0.5 Prensa POPOSED BUILDING REFURBISHMENT (SOUTHERN PORTION /0.2 ⁽²⁾ Connolly /0.5 Connolly /1.0 Connolly /1.5 Connolly /0.2 Connolly /0.1 Connolly /0.2 Connolly /0.1 Connolly	24/03/2016	016 Fill			<10							<0.1	-	9.4			- 10	-	-	-	11	-	-		- 1	<50	<100	<100 <	<50 <	<20 <20	0 <50	<50	<50
To 2 ^[2] Connolly 0.5 Connolly 1.0 Connolly 7.1.5 Connolly 7.0.2 Connolly 7/1.0 Connolly	24/03/2016		8.5			<0.4	-	17		5 16		<0.1	<10		<2	<5 .	10 <			-	24				- 1			<100 <		<20 <20			<50
(0.5 Connolly (1.0 Connolly (1.5 Connolly ()(0.2 Connolly ()(1.5 Connolly																																	
/1.0 Connolly /1.5 Connolly 0/0.2 Connolly 0/1.0 Connolly	28/11/2011		6	-		2.7	-	25		4 20	_	0.08	-	16	-	-	- 37		-	-	-	-	-	-	-	-			-		-		
/1.5 Connolly 0/0.2 Connolly 0/1.0 Connolly	28/11/2011 28/11/2011		<5 <5	-		<0.2		52 13		6 <5 5 11		<0.05 <0.05		100	1		- 76		+ -	1	-	-	-				\rightarrow		-	-	+-	+	
0/0.2 Connolly 0/1.0 Connolly	28/11/2011		† ·	-	- 1	-	- 1	-	-	- 11	-			-	-	-	. -	+:	-		-	-	-	-	-	-	-	-	-	- -	+-		
	28/11/2011	011 Fill	<5	-	-	0.3	-	21	- 1	5 39	-	<0.05	-	21	-	-	- 41		-	-	-	-	-	-	-	-	-	-	- <	<20 <20		<50	ND
76 BH6 0.2 Prenca	28/11/2011		<5	_	-	0.5	-	10		5 18		0.12	-	10	-	-	- 47		-	-	-	-	-	-	-	-	-	-		<20 <20		<50	ND
	22/03/2016 22/03/2016		8.4	<2	<10	<0.4	<1	-		0 28 3 27		<0.1	-10	16	<2	-	- 17 10 75		180	<5	15 12	26	6.7		<10	<50 <50				<20 <20		120	240 <50
76_BH6_0.5 Prensa 76_BH7_0.2 Prensa			6.4	<2				32		3 27 8 7.7			<10	11 8.4	<2	<5	10 75		-	1	5.5		-:-		- :					<20 <20 <20 <20		<50 <50	<50 57
176_BH7_0.5 Prensa	23/03/2016		_		<10							<0.1		<5	<2	-	. <5		100	<5	15	-	7.9	-	15					<20 <20			<50
76_BH10_0.3 Prensa	23/03/2016 23/03/2016		13	<2	<10	<0.4	<1	-	23 5	7 11	960	<0.1	-	100	<2	-	- 58	-	-	-	8.2	-	-	-	-	<50	<100	<100 <	<50 <	<20 <20	.0 <50	<50	<50
76_BH10_0.5 Prensa	23/03/2016 24/03/2016		5.3		-	<0.4	-	7	- <	5 13	-	<0.1	<10	<5	<2	<5	10 6.5	-	-	-	8.4	-	-	-	-	<50	<100	<100 <	50 <	20 <20	0 <50	<50	<50
efer to Figure 2 in the 'Figures' section of this report for a p	23/03/2016 24/03/2016 24/03/2016		oil sampling	locations.																													
tuality Controls were collected from B9/0.2 and the highest ite derived EILs calculated for Fill Natural soils, based on F ILs from Dutch Soil Remediation Circular (2013)	23/03/2016 24/03/2016 24/03/2016 for a plan of the proposed		I pH = 7.5.																														
ELs from Canadian Environmental Quality Guidelines (Comn	23/03/2016 24/03/2016 24/03/2016 for a plan of the proposed ighest reported concentrat	and pri = 7.0 and Natural. CEC = 17 and																															
Ls from ANZECC Australian and New Zealand Guidelines fo	23/03/2016 24/03/2016 24/03/2016 for a plan of the proposed ighest reported concentrated on Fill: CEC = 29 and pH =	and pri = 7.0 and Natural. CEC = 17 and	d Sites, Inve	estigation R	levels (1992	2)																											

						BTEX	x					идн		\blacksquare	=	=								PAH/P	henols							=			=		So	olvents	
Beneficial Uses	EQL				polytical property in the prop	g mg/ky	(o) Wilene (o) mg/kg			mg/kg 7.2,4-trimethylbenzene	3 1,3,5-trimethylbenzene	lsopropylbenzene ka/ ^R / ^R / ^R				Acen aphthene Acen aphthene Acen aphthene Acen aphthene O.5		mg/kg 0.5		By/kgm 0.5				Benzo(k)fluoranthene	Chrysene mg/kg			Mg/kg 0.5		0.5			mg/kg 0.5		mg/kg 0.5		m //wethyr-2-pentanone	Acetone Acetone	Mylam disuffide Corbon disuffide
Maintenance of Ecosystems		for Commerical/Industrial			25 425			05	245	_																				370					ldot				
Human Health		for Commercial/Industrial, Fine Soils Of for Commercial/Industrial	95	18	85 135			95	215											1.4	40										4000		240000	35000				_	_
		D for Commercial/Industrial, Silt Soils																																					
	0-1m		4		IL NL			NL	250	-				\perp	\longrightarrow															NL					$\perp \perp \perp \mid$				
	1-2m 2-4m		6		IL NL			NL NL	360 590					\vdash	\vdash	\vdash														NL NL		-	\vdash		\vdash	\vdash		\vdash	_
	>4m		10		IL NL			NL	NL																					NL									
Direct Contact		Contact for Commercial/Industrial	430	270	000 99000	0		81000																															
Buildings & Structures Management Limits		Design and Installation (2009) agement Limits for Commercial/Industrial, Fine S	oils	+	$-\!\!\!\!-$					1				┿	\vdash	$\overline{}$		_														-	—			\vdash	-	$-\!\!\!\!-$	
Management Limits	INCT IN 2013 INIAN	agement chinics for commercial/madacrial, fine c	Olis																																				
Field ID	Assessor	Sample Date Matrix Descri	ption																																				
PROPOSED NEW BUILDING FOO				_								_						_		_		_																	
B1/0.2 B1/1.0	Connolly	28/11/2011 Fill 28/11/2011 Natural	:			-	-	-	-	1	-	-	-	-		0.7 <0.1	1.6 <0.1		0.1	<0.1	-	-	<0.1	0.7 <0.1	<0.1	<0.1	3.9 0.3	0.1	<0.1	5.9 0.2	30 1.4	5.7 0.4	-	-	0.2			-	
B1/1.5	Connolly	28/11/2011 Natural					-	-	-	1				 		- 0.1	- 0.1	- 0.1	- 0.1		-		- 0.1				-	- 0.1	- 0.1	- 0.2	1.4	-		-	- 0.2			-	
B2/0.2	Connolly	28/11/2011 Fill	-	-		-	-	-	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<0.1	-	-	<0.1	-	-	-	
B2/0.5	Connolly	28/11/2011 Fill		-	-	-	-	-	-		-	-	-	-		<0.1	<0.1		<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<0.1	-	-	<0.1	-		-	
B2/1.5 B3/0.2	Connolly	28/11/2011 Natural 28/11/2011 Fill		+ :	-	-	-	-	-	<u> </u>	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND ND	<0.1	-	-	<0.1			-	
B3/1.0	Connolly	28/11/2011 Pill 28/11/2011 Natural				-	-	-	-	1				 		- 0.1	- 0.1	- 0.1			-		- 0.1						- 0.1	- 0.1	-	- 0.1		-	- 0.1			-	
B3/1.5	Connolly	28/11/2011 Natural	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
B4/0.2	Connolly	28/11/2011 Fill		-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	
B4/1.4 B5/0.2	Connolly	28/11/2011 Natural 28/11/2011 Fill	<0.5 <0.5		0.5 <0.5 0.5 <0.5		-	<0.5 <0.5	-	<0.5 <0.5	-	-	<0.5 <0.5	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND ND	<0.1	<0.5 <0.5	-	<0.1 <0.1			-	
B5/1.5	Connolly	28/11/2011 Pill 28/11/2011 Natural	- 10.3	-		-	-	- 40.5	-	- 10.3				 		- 0.1	- 0.1	- 0.1			-		- 0.1						- 0.1	- 0.1	-	- 0.1	- 0.5	-	- 0.1			-	
B6/0.2	Connolly	28/11/2011 Fill	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
B6/0.5	Connolly	28/11/2011 Fill		-		-	-	-	-	· ·	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	
B6/1.0 B6/1.5	Connolly	28/11/2011 Natural 28/11/2011 Natural	:			-	-	-	-	1	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-				-	
B8/0.2	Connolly	28/11/2011 Fill		٠.		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
B8/0.5	Connolly	28/11/2011 Natural		-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	
B8/1.5 19476 BH2 0.2	Connolly Prensa	28/11/2011 Natural 23/03/2016 Fill		+-	-	-	-	-	<20	+ -	-	-	-	+-	-	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5			-	
19476_BH2_0.5	Prensa	23/03/2016 Fill 23/03/2016 Fill			_	-	-	-	<20	H :	-	-		-		<0.5	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5			-	
19476_BH3_0.3	Prensa	22/03/2016 Fill		-		-	-	-	<20		-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	-	-	-	
19476_BH3_0.5	Prensa	22/03/2016 Natural	<0.1						<20	<0.05	<0.05	<0.05	<0.05	<0.2	<0.4	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.05			<0.05 <0.05
19476_BH4_0.33 19476_BH4_0.55	Prensa Prensa	23/03/2016 Fill 23/03/2016 Natural	<0.1	<0	0.1 <0.1	<0.2	2 <0.1	<0.3	<20 <20	<0.05	<0.05	<0.05	<0.05	<0.2	<0.4	<0.5 <0.5	<0.5 <0.5		<0.5 <0.5	<0.5 <0.5	1.2	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	<0.5 <0.5	<0.05	<0.05 <	<0.05 <0	<0.05 <0.05
19476_BH4_0.35	Prensa	24/03/2016 Ratural 24/03/2016 Fill				-	-	-	<20	1	-	-		 		<0.5	<0.5		<0.5	<0.5	1.2	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5			-	
19476_BH5_0.5	Prensa	24/03/2016 Natural		-		-	-	-	<20		-	-	-	-	-	<0.5											<0.5					<0.5	-	-	<0.5	-	-	-	
PROPOSED BUILDING REFURBISH																																							
B9/0.2 ⁽²⁾	Connolly	28/11/2011 Fill		-	-	-	-	-	-		-	-	-	-	-	<0.1	<0.1	<0.1	0.1	0.1	-	-	<0.1	<0.1	0.1	<0.1	0.2	<0.1	<0.1	<0.1	0.7	<0.1	-	-	0.2	-	-	-	
B9/0.5 B9/1.0	Connolly	28/11/2011 Fill 28/11/2011 Natural		+ -	-	-	-	+ -	-	+ -	-	-	-	+ -			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	+			-	
B9/1.5	Connolly	28/11/2011 Natural 28/11/2011 Natural	- + :		. — :	-	-	+ -		1 :	1			 				+ :-		1					-		-					-						-	
B10/0.2	Connolly	28/11/2011 Fill					-	-	-	<u> </u>	-	-	<u> </u>	-		<0.1	<0.1	<0.1	0.1	0.1	-	-	0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.6	<0.1	-	-	<0.1	-	- 1	-	
B10/1.0	Connolly	28/11/2011 Natural		-		-	-	-	-		-	-	-	<u> </u>	-	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<0.1		-	<0.1				
19476_BH6_0.2 19476_BH6_0.5	Prensa Prensa	22/03/2016 Fill 22/03/2016 Fill	<0.1	<0	0.1 <0.1	<0.2	2 <0.1	<0.3	<20 <20	<0.05	<0.05	<0.05	<0.05	<0.2	<0.4	<0.5 <0.5	<0.5		<0.5 <0.5		1.2	<0.5		<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5	<0.05		<0.05 <0	<0.05 <0.05
19476_BH6_U.5 19476_BH7_0.2	Prensa	22/03/2016 Fill 23/03/2016 Fill	- :	-	_	-	+ :	-	<20	1	1	-	-	 	-	<0.5	<0.5	<0.5 <0.5		<0.5 <0.5		<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5 <0.5	-	-	<0.5	-			
19476_BH7_0.5	Prensa	23/03/2016 Fill	<0.1	<0	0.1 <0.1	<0.2	2 <0.1			<0.05	<0.05	<0.05	_	<0.2												<0.5		<0.5									<0.05 <		<0.05 <0.05

^{| 19476}_BH7_0.2 | Prensa | 23/03/2016 | Fill | 19476_BH7_0.5 | Prensa | 23/03/2016 | Fill | 19476_BH10_0.3 | Prensa | 24/03/2016 | Fill | 19476_BH10_0.5 | Prensa | 24/03/2016 | Prensa | Prensa | 24/03/2016 | Prensa | Prensa | 24/03/2016 | Prensa | Prensa | Prensa | 24/03/2016 | Prensa | Prensa | Prensa | 24/03/2016 | Prensa | 24/03/2016 | Prensa | 24/03/2016 | Prensa | 24/03/2016 | Prensa | Prensa | 24/03/2016 | Prensa | 2

				_				T			Organiop	hosphorous F	Countries							_								Organioc	hlorine Pest	i i i i i i i i i i i i i i i i i i i							
				Azinophos methyl	, Bolstar (Sulprofos)	Chlorpyrifos	Demeton-O	Diazinon	Dichlorvos	, Disulfoton Ethion	Ethoprop	Fentrothion	, Fensulfothion	Fenthion	Merphos Methyl parathlon	Mevinphos (Phosdrin)	Naled (Dibrom)	Phorate	Trichloronate	4.4-DDE	a-BHC	Aldrin	b-BHC cis-chlordane	, trans-chlordane	chlordane	. 4-внс	000	Doi	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde	Endrin ketone , g-BHC (Lindane)	Heptachlor	, Heptachlor epoxide	Methoxychlor
ficial Uses	EQL			0.2	mg/kg 0.2					mg/kg mg/ 0.2 0.3				mg/kg m 0.2	g/kg mg/			mg/kg mg 0.2 0.		0.05	mg/kg 0.05		ng/kg mg/k	g mg/kg		0.05 (mg/kg 0.05		mg/kg 0.05		mg/kg mg/k 0.05 0.05			mg/kg 0.05
ntenance of Ecosystems	NEPM 2013 EILs fo	or Commerical/Industrial		T																								40									
	NEPM 2013 ESLs f	or Commercial/Industrial, Fi	ne Soils																																		
an Health	NEPM 2013 HIL D	for Commercial/Industrial				2000																			530							100			50		2500
	NEPM 2013 HSL D	for Commercial/Industrial, S	Silt Soils																																		
	0-1m																																				4
	1-2m			-																																	_
	2-4m >4m																																				+
rect Contact		ontact for Commercial/Indus	trial																																		
Idings & Structures		esign and Installation (2009)	Citor Citor																											1							$\overline{}$
nagement Limits		gement Limits for Commerci	al/Industrial, Fine Soils	1																1																	$\overline{}$
d ID	Assessor	Sample Date	Matrix Description																																		
POSED NEW BUILDING FOO				_																																	
0.2	Connolly	28/11/2011	Fill	+ -	-		-	-	-	- -	-		-	-	- -	-	-	- -	-			-0.05				- 0.05	-									-0.05	-
1.0	Connolly	28/11/2011	Natural	+ -	-	-	-	-	-	- -	-	-	-	- -	- -	-	-	- -	-	<0.05	<0.05	<0.05 <	<0.05 <0.0	<0.05	-	<0.05 <	U.U5 <(1.05 <0.0	J5 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.0	<0.05	<0.05	<0.05
1.5 0.2	Connolly	28/11/2011	Natural	+ -	-			-	-		-	-	-			-	-		-	+ -				+ -	-				-	+ -	-	-	-		-	-	+-
0.5	Connolly	28/11/2011 28/11/2011	Fill	+ :-	-		- +		-		+ -	+ - +	-	-		+ -	-		-	+ :				+ -			-		+ -	+ -					-	-	+-
/1.5	Connolly	28/11/2011	Natural	+ :		-	-		-		+ -	1 1	-	-	. -	-				<0.05	<0.05	<0.05	<0.05 <0.09	<0.05		<0.05 <	0.05 <0	.05 <0.1	05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.0	<0.05	<0.05	<0.05
/0.2	Connolly	28/11/2011	Fill		-	-	-	-	-	- -	-	- 1	-	-	- -	-	-	-	-	- 40.03	-				- 1						-				- 40.03	-	-
/1.0	Connolly	28/11/2011	Natural	1 -	-	-	- 1	-	-		-	-	-	-		-	-		-	<0.05	<0.05	<0.05 <			-	<0.05 <	0.05 <0	0.05 <0.0			<0.05			<0.05 <0.0	< 0.05	<0.05	<0.05
/1.5	Connolly	28/11/2011	Natural		-	-	-	-	-		-	-	-	-		-	-		-	-	-	-		-	-	-	-		-	-	-	-	-		-	-	-
1/0.2	Connolly	28/11/2011	Fill	· ·	-	-	-	-	-		-	- T	-	-		-	- 1	- -	-		-	-		-	- 1	-	-	- -	-	-	-	-	-		-	-	-
1/1.4	Connolly	28/11/2011	Natural	+ -	-	-	-	-	-	- -	-	-	-	-	- -	-	-	- -	-				<0.05 <0.0		-									<0.05 <0.0			
6/0.2	Connolly	28/11/2011	Fill	+ -	-	-	-	-	-	- -	-		-	-		-	-	- -	-				<0.05 <0.0											<0.05 <0.0			
/1.5 /0.2	Connolly	28/11/2011 28/11/2011	Natural Fill	+ :-	-				-		-	+ - +		-		-	-	-1-	-	<0.05	<0.05	<0.05	<0.05 <0.0	<0.05		<0.05 <	0.05 <0	0.05 <0.0	<0.05	<0.05	<0.05	<0.05	\U.U5 4	<0.05 <0.0	< 0.05	<0.05	<0.05
6/0.5	Connolly	28/11/2011	Fill	+ :-		-	-	-	-		+ :	1 1	-	-	. .	-			-	+:		-		+ -		-	-	. -	+ -	+ -	-	-	-		+ -		+
5/1.0	Connolly	28/11/2011	Natural		-	-	-	-	-	- -	-	- 1	-	-	- -	-	-	-	-	<0.05	<0.05	<0.05 <	<0.05 <0.0	< 0.05	- 1	<0.05 <	0.05 <0	.05 <0.	05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.0	< 0.05	<0.05	<0.05
/1.5	Connolly	28/11/2011	Natural	⊥.	-	-	-	-			-		-			-	-		-	1 -	-	-		-	-		-			-	-	-	-		-	-	-
3/0.2	Connolly	28/11/2011	Fill		-	-	-	-	-		-	-	-	-		-	-		-	-	-	-		-	-	-	-		-	-	-	-	-		-	-	-
3/0.5	Connolly	28/11/2011	Natural		-	-	-	-	-		-	-	-	-		-	-		-	<0.05	<0.05	<0.05 <	<0.05 <0.0	< 0.05		<0.05 <	0.05 <0	.05 <0.0	0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.0	< 0.05	<0.05	<0.05
3/1.5	Connolly	28/11/2011	Natural	+ :-	-	-	-	-	-		-	-	-	-		-			-	1	-			+ -	-	- 0.05	-		-	-	-	-			-	-	-
476_BH2_0.2	Prensa	23/03/2016	Fill	<0.2		<0.2				<0.2 <0.								<0.2 <0				<0.05 <		+ -										<0.05 <0.0			
476_BH2_0.5 476_BH3_0.3	Prensa Prensa	23/03/2016 22/03/2016	Fill	<0.2				<0.2		<0.2 <0.		<0.2		<0.2 <		2 <0.2						<0.05 <		+ -	<0.1	<0.05 <		0.05 <0.0		<0.05			<0.05		<0.05 <0.05		<0.05
476_BH3_0.5	Prensa	22/03/2016	Natural	- 10.2	- <0.2			<0.2	- 0.2	<0.2 <0.	2 <0.2	<0.2	-0.2	<0.2 <	:0.2 <0.	2 <0.2	<0.5	<0.2 <0	.2 <0.2	<0.05	- <0.05	<0.05 <		+ -	<0.1	- <	0.05 <0	1.05 <0.0	05 <0.05	<0.05	<0.05	<0.05	- 0.05		<0.05		
476_BH4_0.33	Prensa	23/03/2016	Fill			<0.2	-	-	-	- -	-	- 1	-	-	- -	-	-	-	-	<0.05		<0.05	- -	-	<0.1					<0.05			-		<0.05		<0.05
476_BH4_0.55	Prensa	23/03/2016	Natural	<0.2			<0.2	<0.2	<0.2	<0.2 <0.	2 <0.2	<0.2	<0.2	<0.2 <	:0.2 <0.	2 <0.2	<0.5	<0.2 <0	.2 <0.2		<0.05	<0.05 <	<0.05 -	-	<0.1								<0.05	<0.05 <0.0	< 0.05	<0.05	
476_BH5_0.35	Prensa	24/03/2016	Fill	<0.2				<0.2		<0.2 <0.						2 <0.2						<0.05 <		-	<0.1									<0.05 <0.0			<0.05
176_BH5_0.5	Prensa	24/03/2016	Natural	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <0.	2 <0.2	<0.2	<0.2	<0.2 <	:0.2 <0.	2 <0.2	<0.5	<0.2 <0	.2 <0.2	2 <0.05	<0.05	<0.05 <	<0.05 -		<0.1	<0.05 <	0.05 <0	.05 <0.0	05 < 0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.0	<0.05	<0.05	<0.05
OPOSED BUILDING REFURBIS				_																_																	
/0.2 ⁽²⁾	Connolly	28/11/2011	Fill	+ -	-	-	-	-	-	- -	-	-	-	-	- -	-	-	- -	-	+ -	-	-		-	-	-	-		-	-	-	-	-		-	-	-
/0.5	Connolly	28/11/2011	Fill	+ -	-	-	-	-	-	- -	-		-	-	- -	-	-	- -	-		-0.05				-	-0.05	0.05			-0.05		- 0.05	-0.05			-0.05	
/1.0 /1.5	Connolly	28/11/2011 28/11/2011	Natural Natural	+ :-	-		-		-		-	+ - +	-	-		-	1	-1-	-	<0.05	<0.05	<0.05	<0.05 <0.0	<0.05	1	<0.05 <	J.U5 <(.0> <0.	cu.05 حر	<0.05	<0.05	<0.05	<0.05	<0.0	<0.05	<0.05	<0.05
0/0.2	Connolly	28/11/2011	Fill	+ :-			-	-	-		+ :	1 1	-	-	. .	-			-	+:	1	-		+ -	1	-	.	. -	+ -	+ -	-	-	-		+ -		+
0/1.0	Connolly	28/11/2011	Natural		-	-	-	-	-		-	- 1	-	-		-	-		-	<0.05	<0.05	<0.05 <	<0.05 <0.0	< 0.05	-	<0.05 <	0.05 <0	.05 <0.0	05 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05 <0.0	< 0.05	<0.05	<0.05
176_BH6_0.2	Prensa	22/03/2016	Fill		-		-	-	-		-	-	-	-		-	-		-		-			-	<0.1					<0.05			-			-	
76_BH6_0.5	Prensa	22/03/2016	Fill															<0.2 <0				<0.05 <		-		<0.05 <	0.05 <0	.05 <0.0	0.05	<0.05	<0.05	<0.05		<0.05 <0.0			
76_BH7_0.2	Prensa	23/03/2016	Fill	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2 <0.		<0.2	<0.2	<0.2 <				<0.2 <0				<0.05 <		-	<0.1									<0.05 <0.0			
476_BH7_0.5 476_BH10_0.3	Prensa Prensa	23/03/2016 24/03/2016	Fill			<0.2	-0.2		- 0.2		2 <0.2		- 0.2					<0.2 <0	2 -01			<0.05 <0.05		-	<0.1					<0.05			- CO OF	<0.05 <0.0	40.03		<0.05
476_BH10_0.3 476_BH10_0.5	Prensa	24/03/2016	Fill															<0.2 <0						+ -										<0.05 <0.0			
Refer to Figure 2 in the 'Figure					-0.2	-0.2	-0.2	10.2	~	.5.2 40.	_ \ \0.2	-0.2	-0.2		<0.	_ \ \0.2	-0.3	-0.2	_ \ \0.2	0.03	-0.03	-0.03			-5.1	-0.03		\ <0.0	0.03	, -0.03	-0.03	-0.03		2.03 <0.0	0.03	-5.05	-0.03
Quality Controls were collecte				J																																	
Site derived EILs calculated for				d pi																																	
ILs from Dutch Soil Remediat																																					
ILs from Canadian Environme		Commercial)																																			
			Management of Contaminate	ed s																																	
	una new Acaiana Julueni	ica ioi the maseashiellt allu l	TOTAL DE CONTRE INTERESTRATE																																		
ot Limiting.																																					

				_	1	Herb	bicides	-		Pesticides	-												Chlorina	ted Hydro	arbons									$\overline{}$	$\overline{}$		-
				noxy Acetic Acid			phenoxyacetic acid	phenoxy Butanoic Aci			ethane	e	ethane	e			ane		e.	92	ane	thane		de	thane				ene	bene					sthene	ropene	
				My/ga 2,4,5-Trichlorophe	Hedonal	Atrazine M/8m	a 2-Methyl-4-chloro	^{gy/gm} 2-Methyl-4-Chloro	Mecoprop mg/kg	Wire w	g 1,1,1,2-tetrachlore	ay/gm 7,1,1-trichloroeth	m 1,1,2,2-tetrachlore	ay 1,1,2-trichloroeth	ay/a 1,1-dichloroethan	mg/kg 1,1-dichloroethen	mg/g/l mg	mg/kgm/groethan	공 제 제 1,2-dichloropropa	mg/kg 1,3-dichloropropa	Bromochlorometh	Bromodichlorome	Bromoform mg/kg	Zarbon tetrachlor	Chlorodibromome	Chloroethane	Chloroform Chloroform	Chloromethane	wg/gm ris-1, 2-dichloroeth	By cis-1,3-dichloropro	mg/kg	Dichloromethane	Trichloroethene	Tetrachloroethene	ks/gm ky/gm ky/gm	g/ga g/ga g/ga g/ga g/ga g/ga g/ga g/ga	Vinyl chloride
Beneficial Uses	EQL						0.5			0.01	0.05	0.05	0.05	0.05	0.05	0.05			0.05			0.05	0.05				0.05			0.05				0.05	0.05	0.05	0.05
Maintenance of Ecosystems	NEPM 2013 EILs for	Commerical/Industrial																																			
		Commercial/Industrial, Fine	Soils																																		
Human Health		or Commercial/Industrial or Commercial/Industrial, Sil	t Soils	5000	9000	2500	5000	5000	5000	100																									\rightarrow		=
	0-1m	or commercial/madscrial, sin	1 30113																																-		
	1-2m																																				
	2-4m																																				
Direct Contact	>4m	tact for Commercial/Industr	ial																																\rightarrow		
Buildings & Structures		ign and Installation (2009)	Idi																																$\overline{}$		
Management Limits		ement Limits for Commercial	/Industrial, Fine Soils																																		
Field ID	Assessor	Sample Date	Matrix Description																																		
PROPOSED NEW BUILDING FOOT B1/0.2		28/11/2011	Fill		1						1																										
B1/0.2 B1/1.0	Connolly	28/11/2011	Natural	 	-	-	-				H :-	-	-	- :	-				-	-	-		-	-	-	-	-	-	-		-					-	
B1/1.5	Connolly	28/11/2011	Natural		-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B2/0.2	Connolly	28/11/2011	Fill	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B2/0.5	Connolly	28/11/2011	Fill		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B2/1.5	Connolly	28/11/2011	Natural	· ·	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
B3/0.2 B3/1.0	Connolly	28/11/2011 28/11/2011	Fill Natural	1	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	
B3/1.5	Connolly	28/11/2011	Natural			-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
B4/0.2	Connolly	28/11/2011	Fill		-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-
B4/1.4	Connolly	28/11/2011	Natural	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<1
B5/0.2	Connolly	28/11/2011	Fill	· ·	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1
B5/1.5	Connolly	28/11/2011	Natural Fill	<u> </u>	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-
B6/0.2 B6/0.5	Connolly Connolly	28/11/2011 28/11/2011	Fill	 	-	-	-				H :-	-	-	- :	-				-	-	-		-	-	-	-	-	-	-		-					-	
B6/1.0	Connolly	28/11/2011	Natural		-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B6/1.5	Connolly	28/11/2011	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B8/0.2	Connolly	28/11/2011	Fill		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
B8/0.5	Connolly	28/11/2011	Natural	H -	-	-	-	-	-	-	H .	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-+		-	-
B8/1.5 19476_BH2_0.2	Connolly Prensa	28/11/2011 23/03/2016	Natural Fill	+ :-	+ -	1	-	-		-	1	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-	
19476_BH2_0.5	Prensa	23/03/2016	Fill		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19476_BH3_0.3	Prensa	22/03/2016	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-
19476_BH3_0.5	Prensa	22/03/2016	Natural	<0.5	<0.5	<0.2	<0.5	<0.5	<0.5	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05
19476_BH4_0.33	Prensa Prensa	23/03/2016 23/03/2016	Fill Natural	<0.5	<0.5	<0.2	<0.5	<0.5	<0.5	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
19476_BH4_0.55 19476_BH5_0.35	Prensa	24/03/2016	Fill	 	-	-	-				H :-	-	-	- :	-				-	-	-		-	-	-	-	-	-	-		-	\rightarrow				-	
19476_BH5_0.5	Prensa	24/03/2016	Natural		-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-
PROPOSED BUILDING REFURBISH	MENT (SOUTHERN PORT																																				
B9/0.2 ⁽²⁾	Connolly	28/11/2011	Fill	· ·	-	-	-	-	- 1	-	T -	-	-	-	-	-	-	- 1	-	-	-	- 1	-	-	-	-	-	-	-	-	-	- 1	- 1	-	- 1	-	-
B9/0.5	Connolly	28/11/2011	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B9/1.0	Connolly	28/11/2011	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	
B9/1.5	Connolly	28/11/2011	Natural Fill	<u> </u>	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-
B10/0.2 B10/1.0	Connolly Connolly	28/11/2011 28/11/2011	Natural	+:-	+ :	+ -	-			-	 	-	-	-	1				-	-	-			-		-	-	-	-	-	-					-	
19476_BH6_0.2	Prensa	22/03/2016	Fill	<0.5	<0.5	<0.2	<0.5	<0.5	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
19476_BH6_0.5	Prensa	22/03/2016	Fill		-	-	-	-	-		1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19476_BH7_0.2	Prensa	23/03/2016	Fill		-	-	-	-	-	-	· ·	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
19476_BH7_0.5	Prensa	23/03/2016	Fill	<0.5	<0.5	<0.2	<0.5	<0.5	<0.5	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
19476_BH10_0.3	Prensa	24/03/2016	Fill	H -	-	-	-	-		-	H .	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-+		-	
19476_BH10_0.5	Prensa	24/03/2016	FIII	1 .	-	-			-	-	<u> </u>	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	

						Halog	enated Ber	nzenes				Halogen	ated Hydr	ocarbons		Halogenated Phenols			Po	lychlorina	ted Biphen	yls		
Beneficial Uses	[EQL			gy/gm gg/lgm 20.05	mg/kgm/gn.005	mg/kg 1,4-dichlorobenzene	4-chlorotoluen e	Bromobenzene Bromobenzene Bromobenzene	CHorobenzene CHorobenzene	Hexachlorobenzene	20.05	Bromomethane	Dichlorodifluoromethane	lodomethane lodomethane mg/kg	Trichlorofluoromethane	Well ben tachlorophen of	Arochlor 1016	Arochlor 1221	mg/kg 0.1	Mg/kg 0.1	mg/kg 0.1	Mg/kg 0.1	M2/kg 0.1	DC Bs (Sum of total)
Maintenance of Ecosystems	NEPM 2013 EILs for Comm	erical/Industrial		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	NEPM 2013 ESLs for Comm		ie Soils																					
Human Health	NEPM 2013 HIL D for Comr									80						660								7
	NEPM 2013 HSL D for Com	mercial/Industrial, S	ilt Soils																					
	0-1m			-																			$\overline{}$	
	1-2m 2-4m																							-
	>4m																							-
Direct Contact	CRC Care Direct Contact for	r Commercial/Indust	trial																					
Buildings & Structures	AS 2159 Piling - Design and																							
Management Limits	NEPM 2013 Management L	Limits for Commercia	al/Industrial, Fine Soils																					
Field ID	Assessor	Sample Date	Matrix Description																					
PROPOSED NEW BUILDING FOOTPI			Matrix Description																					
B1/0.2		28/11/2011	Fill	Τ.											- 1	_								-
B1/1.0		28/11/2011	Natural		-	-	-	-	-	<0.05	-	-	-	-	-		<u> </u>	-	-	-	-	-		
B1/1.5		28/11/2011	Natural		-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-
B2/0.2	Connolly	28/11/2011	Fill		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B2/0.5		28/11/2011	Fill		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	
B2/1.5		28/11/2011	Natural Fill	+ :-	-	-	-	-	-	<0.05	-	-	-	-	-	-	· ·	-	-	-	-	-	-	
B3/0.2 B3/1.0		28/11/2011 28/11/2011	Natural	 :	-	-	-	-	-	<0.05	-	-	-	-	-	•	<u> </u>	-	-	-	-	-		
B3/1.5		28/11/2011	Natural	1	-	-	-	-		- 0.03		-		-	-		<u> </u>	-	-	-	-			-:-
B4/0.2		28/11/2011	Fill		-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	- 1
B4/1.4		28/11/2011	Natural	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.05	<0.5	-	-	-	<2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	ND
B5/0.2		28/11/2011	Fill	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.05	<0.5	-	-	-	<2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	ND
B5/1.5		28/11/2011	Natural		-	-	-	-	-	<0.05		-	-	-	-		· ·	-	-	-	-	-	-	
B6/0.2		28/11/2011	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-
B6/0.5 B6/1.0		28/11/2011 28/11/2011	Natural	 	-	-	-		- :	<0.05	<u> </u>	-	- :	-	-		H :	-	-		-	-		
B6/1.5		28/11/2011	Natural		-	-	-	-	-		-	-	-	-	-			-	-	-	-	-	-	-
B8/0.2		28/11/2011	Fill	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-
B8/0.5		28/11/2011	Natural	-	-	-	-	-	-	<0.05	-	-	-	-	-			-	-	-	-	-	-	-
B8/1.5		28/11/2011	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	· ·	-	-	-	-	-	-	-
19476_BH2_0.2 19476_BH2_0.5		23/03/2016 23/03/2016	Fill	1	-	-	-	-	-	<0.05 <0.05		-		-		-	<u> </u>	-	-	-	-	-		-
19476 BH3 0.3		22/03/2016	Fill	 						<0.05		-			-		<u> </u>				-	-		
19476_BH3_0.5		22/03/2016	Natural	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
19476_BH4_0.33		23/03/2016	Fill	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
19476_BH4_0.55		23/03/2016	Natural		-	-	-	-	-	<0.05		-	-	-	-		· ·	-	-	-	-	-	-	-
19476_BH5_0.35 19476_BH5_0.5		24/03/2016 24/03/2016	Fill Natural	<u> </u>	-	-	-	-	-	<0.05 <0.05	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	
PROPOSED BUILDING REFURBISHM			INALUIAI	-	-	-	-	-	-	<0.05		-		-	-			-	-	-	-	-	_	
B9/0.2 ⁽²⁾		28/11/2011	Fill	T .	T -	-	-	-	-	- 1		-		-	-					-	-	-	- 1	-
B9/0.5	-	28/11/2011	Fill			-				-		-			-			-		-	-		-	-
B9/1.0		28/11/2011	Natural	1	-	-	-	-	-	<0.05		-	-		-	-		-	-	-	-	-	-	
B9/1.5		28/11/2011	Natural		-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-
B10/0.2	Connolly	28/11/2011	Fill		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
B10/1.0		28/11/2011	Natural		-	-	-	-	-	<0.05		-	-	-	-	-		-	-	-	-	-		-
19476_BH6_0.2		22/03/2016	Fill	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
19476_BH6_0.5 19476_BH7_0.2		22/03/2016 23/03/2016	Fill	1		-	-	-		<0.05		-		-	-	-	- : -	-	-		-	-		
19476_BH7_0.2 19476_BH7_0.5		23/03/2016	Fill	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
19476_BH10_0.3		24/03/2016	Fill	-	-	-	-	-	-	<0.05	-	-	-	-	-	-		-	-	-	-	-	-	
19476_BH10_0.5		24/03/2016	Fill		-	-	-	-	-	<0.05	-	-	-	-	-			-	-	-	-	-	-	-
(1)Refer to Figure 2 in the 'Figures' s		-646		1.																				

[|] Solution | Solution

						M	letals							Inorga	nics		Pher	nols	MA	н	PAI	1	TR	н	PCB	Chlo	orinated F	lydrocarbo	ons			OCP		
	Arsenic	Cadmium	Chromium (hexavalent)	Copper	lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Tin	Zinc	pH (aqueous extract)	рН (Lab) CaG2 extract	Fluoride	Cyanide Total	Phenois (non-halogenated)	Phenols(halogenated)	Benzene	Monocylic aromatic hydrocarbons	Benzo(a) pyrene	PAHs (Sum of total)	62 - 93	+C10 - C36 (Sum of total)	PCBs (Sum of total)	Hexachlorobutadiene	Vinyl chloride	Chlorinated hydrocarbons	Other chlorinated hydrocarbons	Organochlorine pesticides	Other organochlorine pesticides	DDT+DDD+DDE	Aldrin + Dieldrin	Heptachlor
	mg/kg	mg/kg	mg/kg	g mg/k	kg mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH_Units	pH_Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg r		
	2	0.4	1	5	5	0.1	10	5	2	5	10	5	0.1	0.1	100	5			0.1		0.5	0.5	20	50	0.1	0.2	0.05							0.05
tegory B Upper Limits	2000	400	2000	2000	6000	300	4000	12000	200	720		140000	<2 or >12.5	<2 or >12.5	40,000	10,000	2200	320	16	240	20	400	2600	40000	0	11	4.8		50		50	50	4.8	4.8
egory C Upper Limits	500	100	500	5000	0 1500	75	1000	3000	50	180	500	35000			10,000	2500	560	10	4	70	5	100	650	10000	0	2.8	1.2		10		10	50	1.2	1.2
aterial Upper Limits	20	3	1	100	300	1	40	60	10	10	50	200	<4 or ≥9	<1 or >9	450	50	60	1	1	7	1	20	100	1000	2			1		1 /				

	pper zimes																		30																		_	
Field ID	Assessor	Sample Date	Matrix Description																																			
ROPOSED NEW BUILD	ING FOOTPRINT (NO	RTHERN PORTION OF TH	IE SITE) ⁽¹⁾																																			
1/0.2	Connolly	28/11/2011	Fill	8	<0.2	-	6	9	<0.05	-	12	-	-	-	20	-	-	-	-	-	-	-	- 1	0.8	30	<20	386	-	-	- 1	-	- 1	-	-	-	(- T	- '	- T
1/1.0	Connolly	28/11/2011	Natural	<5	<0.2	-	<5	12	0.05	-	<5	-	-	-	5	-	-	-	-	-	-	-	- 1	<0.1	1.4	<20	ND	-	-	- 1	-	-	ND	ND	<0.15	<0.1	<0.05	<0.05
1/1.5	Connolly	28/11/2011	Natural	T -	-	-	-	-	- 1	-	-	-	-	-	- 1	-	-	440	-	-	-	-	- 1	-	-	-	-	-	-	T - 1	-	- I	-	-	-	[-]	· - '	· -
2/0.2	Connolly	28/11/2011	Fill	<5	0.4	-	<5	8	<0.05	-	<5	-	-	-	36	-	-	-	-	-	-	-	-	<0.1	ND	<20	ND	-	-	-	-	-	-	-	-	-	-	-
2/0.5	Connolly	28/11/2011	Fill	<5	<0.2	-	<5	15	<0.05	-	<5	-	-	-	<5	-	-	-	-	-	-	-	-	<0.1	ND	-	-	-	-	-	-	-	-	-	-	- 1	- '	-
32/1.5	Connolly	28/11/2011	Natural	5	<0.2	-	<5	15	0.05	-	<5	-	-	-	13	-	-	460	-	-	-	-	-	<0.1	ND	<20	ND	-	-	-	-	-	ND	ND	<0.15	<0.1	<0.05	<0.05
33/0.2	Connolly	28/11/2011	Fill	<5	<0.2	-	49	6	<0.05	-	100	-	-	-	52	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	- 1	-	-	-	-	-	- J	'	-
3/1.0	Connolly	28/11/2011	Natural	<5	<0.2	-	<5	12	<0.05	-	<5	-	-	-	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	ND	ND	<0.15	<0.1	<0.05	<0.05
33/1.5	Connolly	28/11/2011	Natural	T -	-	-	-	-	- 1	-	-	-	-	-	- 1	-	-	640	-	-	-	-	- 1	-	- 1	-	-	-	-	T - 1	-	I - I	-	-	-	I - I	-	-
34/0.2	Connolly	28/11/2011	Fill	<5	<0.2	-	<5	22	0.07	-	7	-	-	-	18	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	- 1	-	- 1	-	-	-	- 1	-	-
34/1.4	Connolly	28/11/2011	Natural	5	<0.2	<1	<5	20	0.05	<5	<5	10	<5	<5	11	-	-	960	<5	ND	ND	<0.5	ND	<0.1	ND	<20	ND	ND	<0.1	<1	ND	ND	ND	ND	<0.15	<0.1	<0.05	<0.05
B5/0.2	Connolly	28/11/2011	Fill	<5	<0.2	<1	6	29	0.06	<5	<5	<3	<5	<5	22	-	-	<100	<5	ND	ND	<0.5	ND	<0.1	ND	<20	ND	ND	<0.1	<1	ND	ND	ND	ND	<0.15	<0.1	<0.05	<0.05
B5/1.5	Connolly	28/11/2011	Natural	<5	<0.2	-	<5	18	<0.05	-	<5	-	-	-	<5	-	-	300	-	-	-	-	- 1	-	-	-	-	-	-	1 - 1	-	- 1	ND	ND	<0.15	<0.1	<0.05	<0.05
B6/0.2	Connolly	28/11/2011	Fill	<5	<0.2	-	<5	10	<0.05	-	<5	-	-	-	24	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	- 1	-	- 1	-	-	-	- 1	-	-
B6/0.5	Connolly	28/11/2011	Fill	<5	<0.2	-	<5	11	<0.05	-	<5	-	-	-	14	-	-	-	-		-	-	- 1	-	- 1	-	-	-	-	- 1	-	- 1	-	-	-		- 1	-
36/1.0	Connolly	28/11/2011	Natural	<5	<0.2	-	<5	12	<0.05	-	<5	-	-	-	<5	-	-	-	-	-	-	-	- 1	-	- 1	-	-	-	-	- 1	-	- 1	ND	ND	<0.15	<0.1	<0.05	<0.05
6/1.5	Connolly	28/11/2011	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	-	350	-	-	-	-	- 1	-	-	-	-	-	-	- 1	-	- 1	-	-	-		-	-
8/0.2	Connolly	28/11/2011	Fill	<5	<0.2	-	5	33	<0.05	-	<5	-	-	-	29	-	-	-	-		-	-	- 1	-	-	-	-	-	-	1 - 1	-	- 1	-	-	-		-	-
8/0.5	Connolly	28/11/2011	Natural	<5	<0.2	-	<5	14	<0.05	-	<5	-	-	-	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	- 1	ND	ND	<0.15	<0.1	<0.05	<0.05
8/1.5	Connolly	28/11/2011	Natural	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	400	-		-	-	- 1	-	-	-	-	-	-	1 - 1	-	- 1	-	-	-		- '	-
9476 BH2 0.2	Prensa	23/03/2016	Fill	8.5	<0.4	-	5.6	29	<0.1	<10	7.5	<2	<5	<10	27	-	-	-	-	-	-	-	-	<0.5	<7.5	<20	<50	-	-	- 1	-	- 1	<1	<0.75	<0.15	<0.15	<0.05	<0.1
19476 BH2 0.5	Prensa	23/03/2016	Fill	7.3	<0.4	-	7.7	9.3	<0.1	<10	9	<2	<5	<10	20	-	-	-	-		-	-	- 1	<0.5	<7.5	<20	<50	-	-	1 - 1	-	- 1	<1	<0.75	<0.15	<0.15	<0.05	<0.1
9476 BH3 0.3	Prensa	22/03/2016	Fill	17	<0.4	-	<5	<5	<0.1	<10	<5	<2	<5	<10	15	-	-	-	-		-	-	- 1	<0.5	<7.5	<20	<50	-		1 - 1	-	- 1	<1	<0.75	<0.15	<0.15	<0.05	<0.1
19476 BH3 0.5	Prensa	22/03/2016	Natural	12	<0.4	<1		16	<0.1	-	12	<2	-	-	13	8	7.5	-	12	<0.7	<1	<0.1	<0.65	<0.5	<7.5	<20	<50	<0.1	-	<0.05	<0.7	<0.65	<0.7	<0.45	<0.15	<0.15	<0.05	<0.1
19476 BH4 0.33	Prensa	23/03/2016	Fill	13	<0.4	<1	38	12	<0.1	-	57	<2	-		39	8.4	7.6	-	13	<0.7	<1		<0.65	<0.5	<7.5	<20	<50	<0.1		<0.05	<0.7	<0.65	<0.7	<0.45	<0.15	<0.15	<0.05	<0.1
19476 BH4 0.55	Prensa	23/03/2016	Natural	17	<0.4	-	<5	15	<0.1	<10	5.7	<2	<5	<10	10	-	-	-	-	-		-	-	<0.5	<7.5	<20	<50	-	-	-	-	-	<1	<0.75	<0.15	<0.15	<0.05	<0.1
19476 BH5 0.35	Prensa	24/03/2016	Fill	6.3	<0.4	<1	<5	7.5	<0.1	-	9.4	<2	-	-	10	-	-	-	-	-	-	-	- 1	<0.5	<7.5	<20	<50	- 1	-	- 1	-	- 1	<1	<0.75	<0.15	<0.15	<0.05	<0.1
19476 BH5 0.5	Prensa	24/03/2016	Natural	8.5	_	-	<5	16	<0.1	<10	<5	<2	<5	<10	_	-	-	-	.		-		- 1		<7.5	<20	<50	- 1		1 - 1	-	<u> </u>	<1	<0.75	_	<0.15		_
		UTHERN PORTION OF TH		0.5	10.1			10	10.1	-10			J	-120										10.5	17.5	120	130							10.75	10.15	10.15	10.05	10.12
39/0.2 ⁽²⁾	Connolly	28/11/2011	Fill	6	2.7	- 1	14	20	0.08	-	16	-	-	-	37	-	-	-	T -	T -	-	-	- 1	0.1	0.7	- 1	- 1	- 1	-	T - T		T - T	-	-		I - I	- 1	
39/0.5	Connolly	28/11/2011	Fill	<5	<0.2		56	<5	<0.05	_	100	_	-		76	-	-	-	-		_			-	0.7	-		-		+ .	_		_	_		\vdash	-	
9/1.0	Connolly	28/11/2011	Natural	<5	_	-	<5	11	<0.05	-	<5	-	-		<5	-	-	-	-	· ·	-	-		-	-	-	-	-		+ - 1	-	-	ND.	ND	<0.15	<0.1	<0.05	<0.05
39/1.5	Connolly	28/11/2011	Natural	-	\U.Z	-	- 5	- 11	V0.03	-	-	-	-			-	-	380	-	-		<u> </u>		-	-	-	-			- -			NU	IND	V0.13	- 10.1		<u> </u>
•			Fill	_	- 0.2	-	- 15	39		-			-	-	$\overline{}$				-	-	-	· ·			-		ND .	-	-	+	_	-	-		-	\vdash		
10/0.2	Connolly	28/11/2011	1.111	<5		-	15		<0.05	-	21	-	-	-	41	-	-	- 000	-	· ·	-	-		0.1		<20			-	+	-		- ND	- ND	-0.15	-0.1		-0.05
10/1.0	Connolly	28/11/2011	Natural	<5			<5	18	0.12	-	10	-	-		47		-	800	- 10					<0.1		<20	ND 240				-0.7	10.05	ND 0.53	ND 10.45	<0.15	<0.1	<0.05	<0.05
9476_BH6_0.2	Prensa	22/03/2016	1 111	8.4	_	<1	20	28	<0.1	-	16	<2	-	-	170	6.7	-	-	<10	<0.7	<1	<0.1	<0.65	<0.5	$\overline{}$	<20	240	<0.1	-	<0.05	<0.7	<0.65	0.53	<0.45	<0.2	0.53	<0.05	<0.1
9476_BH6_0.5	Prensa	22/03/2016	Fill	8.9	<0.4	-	13	27	<0.1	<10	11	<2	<5	<10	75	-	-	-	-	· ·	-	<u> </u>		<0.5	<7.5	<20	<50	-	-		-	 	<1	<0.75	<0.15	<0.15	<0.05	<0.1
9476_BH7_0.2	Prensa	23/03/2016	Fill	6.4	<0.4	<1	7.8	7.7	<0.1	-	8.4	<2	-	-	24	-	-	-		-	-			<0.5	<7.5	<20	57	-	-		-	-	<1	<0.75	<0.15	<0.15	<0.05	<0.1
.9476_BH7_0.5	Prensa	23/03/2016	Fill	7.3	<0.4	<1	<5	16	<0.1	-	<5	<2	-	-	<5	7.9	-	-	15	<0.7	<1	<0.1	<0.65	<0.5	<7.5	<20	<50	<0.1	-	<0.05	<0.7	<0.65	<0.7	<0.45	<0.15	<0.15	<0.05	<0.1
19476_BH10_0.3	Prensa	24/03/2016	Fill	13	<0.4	<1	57	11	<0.1	-	100	<2	-	-	58	-	-	-	-		-	-		<0.5	<7.5	<20	<50	-	-	+	-		<1	<0.75	<0.15	<0.15	<0.05	<0.1
19476_BH10_0.5	Prensa	24/03/2016	he proposed development s	5.3		-	<5	13		<10	<5			<10		-	-			· ·	-	-	-	<0.5	<7.5	<20	<50	-	-		-		<1	<0.75	<0.15	<0.15	<0.05	<0.1

¹⁹⁴⁷⁶ BH10 0.5 | Prensa | 24/03/2016 | Fill | 5.3 | <0.4 | - | <5 | 13 | <0.1 | <10 | <5 | <2 | <5 | <10 | 6.5 | - | - |

(1) Refer to Figure 2 in the 'Figures' section of this report for a plan of the proposed development site layout adnd soil sampling locations. (2) Quality Controls were collected from B9/0.2 and the highest reported concentrations have been adopted.

			Field ID Sample Type Sampled Date/Time	19476_BH2_0.2 Primary 23/03/2016	19476_QC1 Blind Replicate Sample 23/03/2016	RPD	19476_BH2_0.2 Primary 23/03/2016	19476_QC2 Split Sample 23/03/2016	
Chem Group	Chem Name	Units	EQL						
	Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	1.2	1.2	0	1.2	<0.5	+82
	Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.5	0.6	0.6	0	0.6	< 0.5	18
	Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.5	<0.5	<0.5	0	<0.5		
BTEX	C6-C10 less BTEX (F1)	mg/kg	20 (Primary): 25 (Interlab)	<20.0	<20.0	0	<20.0	<25.0	0
Inorganics	Moisture Content (dried @ 103°C)	%	1	8.8	11.0	22	8.8		+-
Lead	Lead	mg/kg	5 (Primary): 1 (Interlab)	29.0	35.0	19	29.0	31.0	7
Metals	Arsenic	mg/kg	2 (Primary): 4 (Interlab)	8.5	8.6	1	8.5	<4.0	+72
	Cadmium	mg/kg	0.4	< 0.4	<0.4	0	< 0.4	<0.4	0
	Chromium (III+VI)	mg/kg	5 (Primary): 1 (Interlab)	8.7			8.7	11.0	23
	Copper	mg/kg	5 (Primary): 1 (Interlab)	5.6	6.5	15	5.6	5.0	11
	Mercury	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.1	0
	Nickel	mg/kg	5 (Primary): 1 (Interlab)	7.5	8.4	11	7.5	6.0	22
	Selenium	ma/ka	2	<2.0	<2.0	0	<2.0		
	Zinc	mg/kg	5 (Primary): 1 (Interlab)	27.0	32.0	17	27.0	30.0	11
PAH	Benzo(b+j)fluoranthene	mg/kg	0.5	<0.5	<0.5	0	<0.5		<u> </u>
									<u> </u>
PAH/Phenols	Acenaphthene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Acenaphthylene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Anthracene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Benz(a)anthracene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Benzo(a) pyrene		0.5 (Primary): 0.05 (Interlab)	<0.5	<0.5	0	<0.5	<0.05	0
	Benzo(g,h,i)perylene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Benzo(k)fluoranthene	mg/kg		<0.5	<0.5	0	<0.5		Ь
	Chrysene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Dibenz(a,h)anthracene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Fluoranthene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Fluorene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Indeno(1,2,3-c,d)pyrene		0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Naphthalene		0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Naphthalene		0.5 (Primary): 1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	PAHs (Sum of total)		0.5 (Primary): 0.05 (Interlab)	<0.5	<0.5	0	<0.5	<0.05	0
	Phenanthrene	mg/kg	0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
	Pyrene	mg/kg	0.5 (Primary): 0.1 (Interlab)	<0.5	<0.5	0	<0.5	<0.1	0
TRH	C10-C16	mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0
	C16-C34	mg/kg	100	<100.0	<100.0	0	<100.0	<100.0	0
	C34-C40	mg/kg	100	<100.0	<100.0	0	<100.0	<100.0	0
	F2-NAPHTHALENE	mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0
	C6 - C9	mg/kg	20 (Primary): 25 (Interlab)	<20.0	<20.0	0	<20.0	<25.0	0
	C10 - C14	mg/kg	20 (Primary): 50 (Interlab)	<20.0	<20.0	0	<20.0	<50.0	0
	C15 - C28	mg/kg	50 (Primary): 100 (Interlab)	<50.0	<50.0	0	<50.0	<100.0	0
	C29-C36	mg/kg	50 (Primary): 100 (Interlab)	<50.0	<50.0	0	<50.0	<100.0	0
	+C10 - C36 (Sum of total)	mg/kg	50	<50.0	<50.0	0	<50.0	<50.0	0
	C6-C10		20 (Primary): 25 (Interlab)	<20.0	<20.0	0	<20.0	<25.0	0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 80 (1-10 x EQL); 50 (10-30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

19476: Detailed Site Investigation Y0003: Yarra Ranges Council 15 Anderson Street, Lilydale

Field ID	19476_R1	19476_TB1
Sample Date	23/03/2016	23/03/2016
Sample Type	Rinsate	Trip Blank

Chem Group	Chem Name	Units	EQL		
BTEX	C6-C10 less BTEX (F1)	mg/l	0.02	<0.02	
- · - / ·			0.02	10.02	
Metals	Arsenic	mg/l	0.001	<0.001	
	Beryllium	mg/l	0.001	<0.001	
	Boron	mg/l	0.05	< 0.05	
	Cadmium	mg/l	0.0002	<0.0002	
	Chromium (hexavalent)	mg/l	0.001	<0.001	
	Cobalt	mg/l	0.001	< 0.001	
	Copper	mg/l	0.001	< 0.001	
	Lead	mg/l	0.001	<0.001	
	Manganese	mg/l	0.005	< 0.005	
	Mercury	mg/l	0.0001	<0.0001	
	Nickel	mg/l	0.001	<0.001	
	Selenium	mg/l	0.001	<0.001	
	Zinc	mg/l	0.001	<0.001	
		Ĭ			
PAH/Phenols	Acenaphthene	μg/l	1	<1	
1 7 (1)/1 11011013	Acenaphthylene	μg/l	1	<1	
	Anthracene	μg/l	1	<1	
	Benz(a)anthracene	μg/l	1	<1	
	Benzo(a) pyrene	μg/l	1	<1	
	Benzo(b+j)fluoranthene	mg/l	0.001	<0.001	
	Benzo(g,h,i)perylene	µg/l	1	<1	
	Benzo(k)fluoranthene	μg/l	1	<1	
	Chrysene	μg/l	1	<1	
	Dibenz(a,h)anthracene	μg/l	1	<1	
	Fluoranthene	μg/l	1	<1	
	Fluorene	μg/l	1	<1	
	Indeno(1,2,3-c,d)pyrene	μg/l	1	<1	
	Naphthalene	μg/l	1	<10	
	PAHs (Sum of total)	μg/l	1	<1	
	Phenanthrene	μg/l	1	<1	
	Pyrene	μg/l	1	<1	
TRH	C10-C16	mg/l	0.05	<0.05	
	C16-C34	mg/l	0.1	<0.1	
	C34-C40	mg/l	0.1	<0.1	
	F2-NAPHTHALENE	mg/l	0.05	< 0.05	
	C6 - C9	μg/l	20	<20	<20
	C10 - C14	μg/l	50	<50	
	C15 - C28	μg/l	100	<100	
	C29-C36	μg/l	100	<100	
	+C10 - C36 (Sum of total)	μg/l	100	<100	
	C6-C10	mg/l	0.02	<0.02	

Appendix A: Planning Property Reports

Property Report from www.land.vic.gov.au on 11 August 2015 03:35 PM

Lot and Plan Number: Lot 1 PS546467

Address: See table below.

Standard Parcel Identifier (SPI): 1\PS546467

Local Government (Council): YARRA RANGES Council Property Number: 247225

Directory Reference: Melway 38 F5

Note: There are 18 properties identified for this site.

These can include units (or car spaces), shops, or part or whole floors of a building.

Dimensions for these individual properties are generally not available.

Note: This parcel is part of a property. For property details get the free Basic Property Report at Property Reports

This parcel is not in a designated bushfire prone area. No special bushfire construction requirements apply. Planning provisions may apply.

Further information about the building control system and building in bushfire prone areas can be found in the Building Commission section of the Victorian Building Authority website www.vba.vic.gov.au

Address Details

These addresses have been found for this property

Address	Address
11 ANDERSON STREET LILYDALE 3140	15G ANDERSON STREET LILYDALE 3140
13 ANDERSON STREET LILYDALE 3140	15H ANDERSON STREET LILYDALE 3140
15 ANDERSON STREET LILYDALE 3140	15I ANDERSON STREET LILYDALE 3140
15A ANDERSON STREET LILYDALE 3140	15J ANDERSON STREET LILYDALE 3140
15B ANDERSON STREET LILYDALE 3140	5 HARDY STREET LILYDALE 3140
15C ANDERSON STREET LILYDALE 3140	7 HARDY STREET LILYDALE 3140
15D ANDERSON STREET LILYDALE 3140	13 HARDY STREET LILYDALE 3140
15E ANDERSON STREET LILYDALE 3140	15 HARDY STREET LILYDALE 3140
15F ANDERSON STREET LILYDALE 3140	17 HARDY STREET LILYDALE 3140

Parcel Details

This is 1 parcel of 4 parcels comprising the property. The parcel searched for is marked with an * in the table below.

Lot/Plan or Crown Description	SPI		
Lot 1 PS546466	1\PS546466		
*Lot 1 PS546467	1\PS546467		

Lot/Plan or Crown Description	SPI		
PARISH OF YERING			
Allot. 10A Sec. 29	10A~29\PP3988		
Allot. 10B Sec. 29	10B~29\PP3988		

State Electorates

Legislative Council: EASTERN VICTORIA

Legislative Assembly: EVELYN

Utilities

Rural Water Business: Southern Rural Water Metro Water Business: Yarra Valley Water Ltd Melbourne Water: inside drainage boundary

Power Distributor: AUSNET (Information about choosing an electricity retailer)

Planning information continued on next page

Copyright © - State Government of Victoria

Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at www.land.vic.gov.au/home/copyright-and-disclaimer

Planning Zone Summary

Planning Zone: PUBLIC USE ZONE - LOCAL GOVERNMENT (PUZ6)

SCHEDULE TO THE PUBLIC USE ZONE - LOCAL GOVERNMENT

Planning Overlays: LAND SUBJECT TO INUNDATION OVERLAY (LSIO)

LAND SUBJECT TO INUNDATION OVERLAY SCHEDULE (LSIO)

PUBLIC ACQUISITION OVERLAY (PAO)

PUBLIC ACQUISITION OVERLAY 9 SCHEDULE (PAO9)

Areas of Aboriginal Cultural Heritage Sensitivity:

This parcel is within, or affected by, one or more areas of cultural heritage sensitivity

Planning scheme data last updated on 6 August 2015.

A **planning scheme** sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State, local, particular and general provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the local council or by visiting Planning Schemes Online

This report is NOT a **Planning Certificate** issued pursuant to Section 199 of the Planning & Environment Act 1987. It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to <u>Titles and Property Certificates</u>

The Planning Property Report includes separate maps of zones and overlays

For details of surrounding properties, use this service to get the Reports for properties of interest

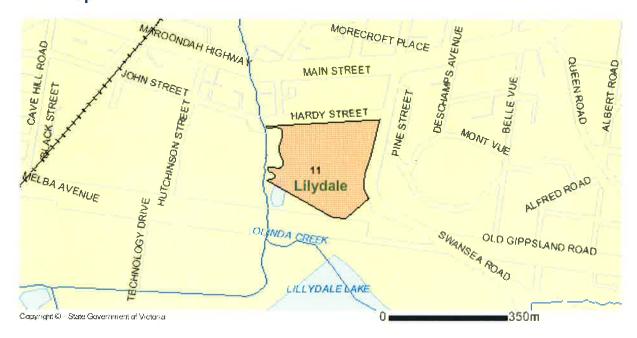
To view planning zones, overlay and heritage information in an interactive format visit Planning Maps Online

For other information about planning in Victoria visit www.dpcd.vic.gov.au/planning

Areas of Aboriginal Cultural Heritage Sensitivity

The data provides indicative information about the location and extent of areas of Aboriginal cultural heritage sensitivity and is provided to assist with the decisions about the potential need to prepare a Cultural Heritage Management Plan in relation to proposed activities on this property.

For further information about whether a Cultural Heritage Management Plan is required go to Aboriginal Heritage Planning Tool


To find out if your property has any recorded Aboriginal cultural heritage places, such as scarred trees, occupation sites or places of burial, you can request information from the Victorian Aboriginal Heritage Register.

Find out more about the Victorian Aboriginal Heritage Register

Area Map

Copyright © - State Government of Victoria

Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided. Read the full disclaimer at www.land.vic.gov.au/home/copyright-and-disclaimer

Planning Property Report

from www.dtpli.vic.gov.au/planning on 12 April 2016 01:28 PM

Address: 15 ANDERSON STREET LILYDALE 3140

Lot and Plan Number: Lot 1 PS546466

This property has a total of 4 parcels.

For full parcel details get the free Basic Property report at Property Reports

Local Government (Council): YARRA RANGES Council Property Number: 170523

Directory Reference: Melway 38 F5

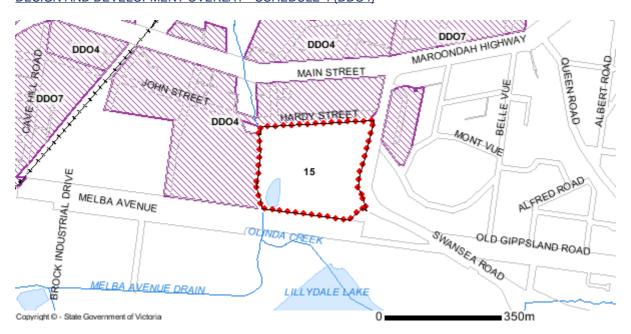
Planning Zone

PUBLIC USE ZONE - LOCAL GOVERNMENT (PUZ6)

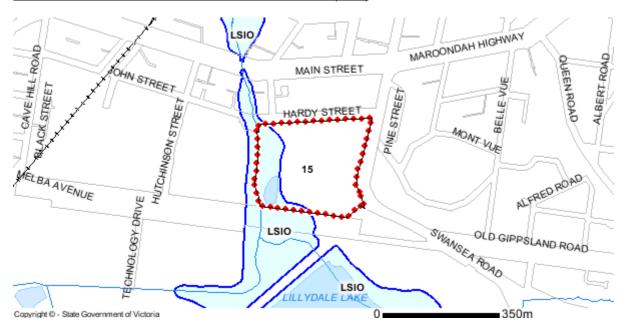
Note: labels for zones may appear outside the actual zone - please compare the labels with the legend.

Zones Legend ACZ - Activity Centre 🛮 IN1Z - Industrial 1 R1Z - General Residential IN2Z - Industrial 2 B1Z - Commercial 1 R2Z - General Residential B2Z - Commercial 1 IN3Z - Industrial 3 R3Z - General Residential LDRZ - Low Density Residential B3Z - Commercial 2 RAZ - Rural Activity B4Z - Commercial 2 MUZ - Mixed Use RCZ - Rural Conservation RDZ1 - Road - Category 1 B5Z - Commercial 1 NRZ - Neighbourhood Residential C1Z - Commercial 1 RDZ2 - Road - Category 2 PCRZ - Public Conservation & Resource C2Z - Commercial 2 RGZ - Residential Growth PDZ - Priority Development CA - Commonwealth Land PPRZ - Public Park & Recreation RLZ - Rural Living RUZ - Rural PUZ1 - Public Use - Service & Utility CCZ - Capital City SUZ - Special Use CDZ - Comprehensive Development PUZ2 - Public Use - Education DZ - Dockland PUZ3 - Public Use - Health Community TZ - Township ERZ - Environmental Rural PUZ4 - Public Use - Transport UFZ - Urban Floodway FZ - Farming PUZ5 - Public Use - Cemetery/Crematorium UGZ - Urban Growth PUZ6 - Public Use - Local Government GRZ - General Residential PUZ7 - Public Use - Other Public Use GWAZ - Green Wedge A Urban Growth Boundary GWZ - Green Wedge PZ - Port

Copyright © - State Government of Victoria


Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

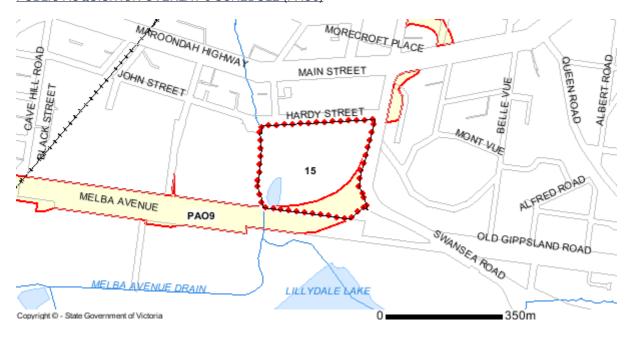
Read the full disclaimer at www.land.vic.gov.au/home/copyright-and-disclaimer



Planning Overlays

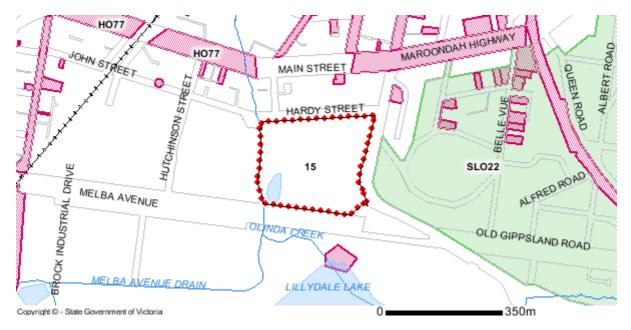
DESIGN AND DEVELOPMENT OVERLAY (DDO) DESIGN AND DEVELOPMENT OVERLAY - SCHEDULE 4 (DDO4)

LAND SUBJECT TO INUNDATION OVERLAY (LSIO) LAND SUBJECT TO INUNDATION OVERLAY SCHEDULE (LSIO)


Copyright © - State Government of Victoria Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Planning Overlays

PUBLIC ACQUISITION OVERLAY (PAO) PUBLIC ACQUISITION OVERLAY 9 SCHEDULE (PAO9)



OTHER OVERLAYS

Other overlays in the vicinity not directly affecting this land

HERITAGE OVERLAY (HO)

SIGNIFICANT LANDSCAPE OVERLAY (SLO)

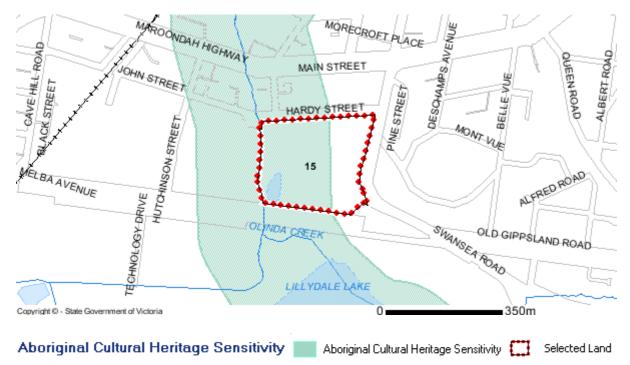
Copyright © - State Government of Victoria Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Planning Overlays Legend

Overlays Legend	
AEO - Airport Environs	LSIO - Land Subject to Inundation
BMO - Bushfire Management (also WMO)	MAE01 - Melbourne Airport Environs 1
CLPO - City Link Project	MAE02 - Melbourne Airport Environs 2
DCPO - Development Contributions Plan	NCO - Neighbourhood Character
DD0 - Design & Development	PO - Parking
DDOPT - Design & Development Part	PAO - Public Acquisition
DPO - Development Plan	R0 - Restructure
EAO - Environmental Audit	RC0 - Road Closure
EMO - Erosion Management	SBO - Special Building
ESO - Environmental Significance	SLO - Significant Landscape
FO - Floodway	SMO - Salinity Management
HO - Heritage	SRO - State Resource
IPO - Incorporated Plan	VPO - Vegetation Protection

Note: due to overlaps some colours on the maps may not match those in the legend.

Areas of Aboriginal Cultural Heritage Sensitivity


This property is within, or is affected by, one or more areas of cultural heritage sensitivity as described in the Aboriginal Heritage Regulations 2007.

The data provides indicative information about the location and extent of areas of Aboriginal cultural heritage sensitivity and is provided to assist with the decisions about the potential need to prepare a Cultural Heritage Management Plan in relation to proposed activities on this property.

For further information about whether a Cultural Heritage Management Plan is required go to Aboriginal Heritage Planning Tool

To find out if your property has any recorded Aboriginal cultural heritage places, such as scarred trees, occupation sites or places of burial, you can request information from the Victorian Aboriginal Heritage Register.

Find out more about the Victorian Aboriginal Heritage Register

Copyright © - State Government of Victoria

Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at www.land.vic.gov.au/home/copyright-and-disclaimer

Further Planning Information

Planning scheme data last updated on 7 April 2016.

A **planning scheme** sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State, local, particular and general provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the local council or by visiting <u>Planning Schemes Online</u>

This report is NOT a **Planning Certificate** issued pursuant to Section 199 of the Planning & Environment Act 1987. It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to <u>Titles and Property Certificates</u>

For details of surrounding properties, use this service to get the Reports for properties of interest

To view planning zones, overlay and heritage information in an interactive format visit Planning Maps Online

For other information about planning in Victoria visit www.delwp.vic.gov.au/planning

Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Appendix B: DELWP Groundwater Resource Report

Groundwater Resource Report

Groundwater catchment: East Port Phillip Bay

VICGRID94 Easting: 2531159 Northing: 2415658

Depth to Water Table: 10 - 20m Water Table Salinity (mg/L): 1001-3500

Groundwater Layers (Aquifers and Aquitards)	Depth Below Surface (m)	Groundwater Salinity (mg/L)	Groundwater Management Unit (GMU)	(GMU) Depth Below Surface (m)	PCV (ML/yr)
BSE Mesozoic and Palaeozoic Bedrock (basement)	0				
sedimentary (fractured rock): Sandstone, siltstone, mudstone, shale. Igneous (fractured rock): includes		1001-3500	Unincorporated Area		
volcanics, granites, granodiorites.	200				

For further information about this report contact:

Department of Environment, Land, Water & Planning Email: ground.water@delwp.vic.gov.au

For further information on groundwater licensing in this area contact:

Southern Rural Water Corporation

Phone: 1300 139 510 Email: srw@srw.com.au Website: www.srw.com.au

> Printed: 31 Mar 2016 Date Updated: 31 May 2014

How to read this report

Introduction

Groundwater is part of the water cycle. When rain or snow falls on land, some of it evaporates, some flows to streams and rivers, and some seeps into the soil. Some of the water in the soil is used by plants but some continues to move down through the soil and rock until all the pores and cracks are full of water. This is known as the water table and this water is called groundwater.

Groundwater is a finite resource that, like surface water, is allocated under the *Water Act (1989)*. A Bore Construction Licence is required to drill for groundwater including for domestic and stock purposes. Taking and using groundwater for commercial or irrigation purposes requires an additional licence.

Purpose of this report

This report has been prepared to provide potential groundwater users with basic information about groundwater beneath their property. This includes the different geological layers, the depths of the layers and the salinity of groundwater in the layers. Information on the groundwater management units (GMU) and any associated caps on the volume that can be licensed (the PCV) are also provided.

Definitions and context

Term	Description
Groundwater Catchment	An identified area of the State within which groundwater resources are connected.
Easting / Northing	The VICGRID 94 coordinates of the spot that was selected on the interactive map.
Groundwater Salinity	Indicates the possible concentration of salts within the groundwater. The salt content indicates the possible uses of the water (see the Beneficial Use Table below). Fertilisers and other contaminants can also enter groundwater and affect its use. It is up to you to make sure that the groundwater you use is suitable for your purpose.
Aquifer	An aquifer is a layer of soil or rock which stores usable volumes of groundwater. Aquifers are generally limestones, gravels and sands, as well as some fractured rocks where the cracks in the rock are open and connected (some basalts, sandstones and limestones). How much water can be pumped from an aquifer depends on how much water is stored in pores and cracks, how well connected the pores and cracks are, and how thick the layer is. It is more likely that volumes of water for irrigation and urban water supply will come from gravels, sands, limestones and basalts that are at least 30 metres thick. Low volumes of water for domestic and stock use are likely from any aquifer greater than 10 metres thick. The advice above is a guide only, as the amount of water available can be highly variable. Actual pumping volumes can only be determined from drilling, appropriate construction and testing of a bore.
Aquitard	An aquitard is a layer of rock or soil that does not allow water to move through it easily, limiting its capacity to supply water. Aquitards are generally silts, clays and fractured rocks (where there are few cracks in the rock or the cracks are poorly connected).
Groundwater Management Unit (GMU)	A collective term for groundwater management areas (GMAs) and water supply protection areas (WSPAs). GMAs and WSPAs are defined areas and depths below the surface where rules for groundwater use may apply. WSPAs often have caps on groundwater use and plans describing how the resource is managed. GMAs usually have caps on groundwater use and may have local plans and rules. All other areas are managed directly through the Water Act (1989). Always check with your local Rural Water Corporation to be sure that the information on the GMU is correct for your specific location.
Permissible Consumptive Volume (PCV)	A cap that is set under the Water Act (1989) declaring the total volume of groundwater that may be taken from the area. Once the PCV is reached, no additional extraction can be licensed for use within the area unless traded from another groundwater licence holder.
Depth to Water Table	This is an indication of the depth at which groundwater might first be encountered when drilling a bore. The depth can vary from year to year, and from place to place and may vary significantly from that indicated in this report.

Beneficial use table

Salinity Range (mg/L TDS)	Beneficial Use as described by State Environment Protection Policy (Groundwaters of Victoria) s160							
	Potable Water - Preferred	Potable Water - Acceptable	Potable Mineral Water	Irrigation	Stock Water	Industry	Ecosystem Protection	Buildings and Structures
<500	1	√	1	✓	1	√	✓	√
501-1000		V	1	✓	1	V	✓	✓
1001-3500			1	1	1	1	1	1
3501-13000					1	1	1	1
13001+						1	1	1

Accessibility

If you would like to receive this publication in an alternate format, please telephone or email the DELWP Customer Service Centre 136 186, email customer.service@delwp.vic.gov.au, or via the National Relay Service on 133 677 www.relayservice.com.au.

© The State of Victoria Department of Environment, Land, Water & Planning 2015

This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968.

Disclaimer

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

Appendix C: EPA Victoria Priority Sites Register Extract

Extract of EPA Priority Site Register

Page 1 of 2

**** Delivered by the LANDATA® System, Department of Environment, Land, Water &

PROPERTY INQUIRY DETAILS:

STREET ADDRESS: 15 ANDERSON STREET

SUBURB: LILYDALE

MUNICIPALITY: SHIRE OF YARRA RANGES

MAP REFERENCES: Melways 40th Edition, Street Directory, Map 38 Reference F6

Melways 40th Edition, Street Directory, Map 38 Reference F5 Melways 40th Edition, Street Directory, Map 38 Reference E6 Melways 40th Edition, Street Directory, Map 38 Reference E5

DATE OF SEARCH: 4th April 2016

PRIORITY SITES REGISTER REPORT:

A search of the Priority Sites Register for the above map references, corresponding to the address given above, has indicated that this site is not listed on, and is not in the vicinity of a site listed on the Priority Sites Register at the above date.

IMPORTANT INFORMATION ABOUT THE PRIORITY SITES REGISTER:

You should be aware that the Priority Sites Register lists only those sites for which EPA has requirements for active management of land and groundwater contamination. Appropriate clean up and management of these sites is an EPA priority, and as such, EPA has issued either a:

Clean Up Notice pursuant to section 62A, or a Pollution Abatement Notice pursuant to section 31A or 31B of the Environment Protection Act 1970 on the occupier of the site to require active management of these sites.

The Priority Sites Register does not list all sites known to be contaminated in Victoria. A site should not be presumed to be free of contamination just because it does not appear on the Priority Sites Register.

Persons intending to enter into property transactions should be aware that many properties may have been contaminated by past land uses and EPA may not be aware of the presence of contamination. EPA has published information advising of potential contaminating land uses. Municipal planning authorities hold information about previous land uses, and it is advisable that such sources of information also be consulted.

For sites listed on the Priority Sites Register, a copy of the relevant Notice, detailing the reasons for issue of the Notice, and management requirements, is available on request from EPA for \$8 per Notice.

For more information relating to the Priority Sites Register, refer to EPA contaminated site information bulletin: Priority Sites Register & Contaminated Land Audit Site Listing (EPA Publication 735). For a copy of this publication, copies of relevant Notices, or for more information relating to sites listed on the Priority Sites Register, please contact EPA as given below:

EPA Information Centre Herald & Weekly Times Tower 40 City Road, Southbank 3006 Tel: (03)9695 2700 Fax:(03

Fax: (03)9695 2710

[Extract of Priority Sites Register] # 21726910 - 21726910092055 'Y0003/19746'

EPA VICTORIA

Extract of EPA Priority Site Register

**** Delivered by the $\,$ LANDATA® System, Department of Environment, Land, Water & Planning ****

[Extract of Priority Sites Register] # 21726910 - 21726910092055 'Y0003/19746'

Extract of EPA Priority Site Register

Page 1 of 2

**** Delivered by the LANDATA® System, Department of Environment, Land, Water &

PROPERTY INQUIRY DETAILS:

STREET ADDRESS: 13 HARDY STREET

SUBURB: LILYDALE

MUNICIPALITY: SHIRE OF YARRA RANGES

MAP REFERENCES: Melways 40th Edition, Street Directory, Map 38 Reference F6

Melways 40th Edition, Street Directory, Map 38 Reference F5 Melways 40th Edition, Street Directory, Map 38 Reference E6 Melways 40th Edition, Street Directory, Map 38 Reference E5

DATE OF SEARCH: 4th April 2016

PRIORITY SITES REGISTER REPORT:

A search of the Priority Sites Register for the above map references, corresponding to the address given above, has indicated that this site is not listed on, and is not in the vicinity of a site listed on the Priority Sites Register at the above date.

IMPORTANT INFORMATION ABOUT THE PRIORITY SITES REGISTER:

You should be aware that the Priority Sites Register lists only those sites for which EPA has requirements for active management of land and groundwater contamination. Appropriate clean up and management of these sites is an EPA priority, and as such, EPA has issued either a:

Clean Up Notice pursuant to section 62A, or a Pollution Abatement Notice pursuant to section 31A or 31B of the Environment Protection Act 1970 on the occupier of the site to require active management of these sites.

The Priority Sites Register does not list all sites known to be contaminated in Victoria. A site should not be presumed to be free of contamination just because it does not appear on the Priority Sites Register.

Persons intending to enter into property transactions should be aware that many properties may have been contaminated by past land uses and EPA may not be aware of the presence of contamination. EPA has published information advising of potential contaminating land uses. Municipal planning authorities hold information about previous land uses, and it is advisable that such sources of information also be consulted.

For sites listed on the Priority Sites Register, a copy of the relevant Notice, detailing the reasons for issue of the Notice, and management requirements, is available on request from EPA for \$8 per Notice.

For more information relating to the Priority Sites Register, refer to EPA contaminated site information bulletin: Priority Sites Register & Contaminated Land Audit Site Listing (EPA Publication 735). For a copy of this publication, copies of relevant Notices, or for more information relating to sites listed on the Priority Sites Register, please contact EPA as given below:

EPA Information Centre Herald & Weekly Times Tower 40 City Road, Southbank 3006 Tel: (03)9695 2700 Fax:(03

Fax: (03)9695 2710

[Extract of Priority Sites Register] # 21728671 - 21728671105139 'Y0003/19746'

Extract of EPA Priority Site Register

**** Delivered by the $\,$ LANDATA® System, Department of Environment, Land, Water & Planning ****

Appendix D: Previous Environmental Report

142 Dynon Road West Melbourne Vic 3003 Australia Telephone +61 3 9372 5688 Facsimile +61 3 9372 5699 www.connolly.com.au

Report to Peddle Thorp Architects

Soil investigation

Yarra Ranges Shire Offices 15 Anderson Street Lilydale VIC

December 2011

Executive summary

Introduction

Peddle Thorp Architects Pty Ltd engaged Connolly Environmental to conduct a soil investigation at 15 Anderson Street, Lilydale VIC ("the site"). The site was the location of the Yarra Ranges Shire Offices which are proposed to be redeveloped. The aim of the soil investigation was to assess the contamination status of the soil within the proposed development area for offsite disposal purposes.

Geotechnical investigations were also conducted by Hardrock geotechnical consultants as part of these works. The results of the geotechnical assessment were presented within a separate report.

Limitations

Conclusions in this report were based on site observations, testing and other information obtained by Connolly Environmental, and on the assumption that these data were representative and reliable. These conclusions must be read in conjunction with the assumptions and uncertainties included in the report. If site conditions or information different to that set out in the report are identified or appear to be present, please advise us promptly. We will re-evaluate our conclusions where necessary.

This report has been prepared for the exclusive use of the client. We have used a degree of care and skill ordinarily exercised under similar conditions by reputable members of our profession, practicing in the same or similar localities. No other warranty, expressed or implied, is made or intended.

This report is issued on the condition that it will not be altered, amended or abbreviated, issued in part or issued incomplete without our prior approval. We accept no responsibility for any loss, damage or consequence that may arise from breaches of this condition.

Scope of work

The scope of work comprised:

- Identification of safe boring locations with an underground service location specialist.
- o Installation of ten soil bores to a maximum depth of 1.5 m.
- Engage geotechnical engineering contractor.
- Collection of soil samples at a minimum of 0.2 m, 0.5 m, 1.0 m and at the base of each bore.
- A soil vapor survey using a portable photoionisation detector (PID) at each sample location
- Laboratory analysis of selected soil samples for a range of potential contaminants of concern.
- Preparation of this report.

Soil bore locations are shown on Figure 1, Appendix 1.

Conclusions

From the current results obtained and based upon visual inspection at the time of sampling on site, Connolly Environmental concluded:

- Elevated concentrations of total PAH in the range for Category C contaminated soils were identified at bore B1 at 0.2 m depth. The concentrations were indicative of asphalt fragments within the sample, and were not representative of the contamination status of the crushed rock layer. The concentration was considered to be an erroneous result.
- Elevated concentrations of nickel were considered to be associated with the presence of basaltic gravels within the soil which is in the fill layer contains naturally, associated with crushed rock.
- Natural soils on site contain naturally elevated levels of fluoride.
- Fill material on site is classified as EPA Fill material with naturally elevated nickel for offsite disposal purposes.
- Natural soils were classified as EPA Fill material with naturally elevated fluoride for offsite disposal purposes.
- Given the elevated naturally occurring concentrations of fluoride and nickel, this soil should not be used for a sensitive use. It can be disposed to landfill or used within a non sensitive use development (such as commercial/industrial). The receiver of the soils must be notified of the naturally elevated fluoride and nickel and provided with the results.

Offsite disposal and transport of soils excavated from the site must be in accordance with EPA requirements. Please note that some landfill may require further soil sampling and analysis prior to acceptance of material for offsite disposal at their own discretion.

Peddle Thorp Architects Pty Ltd Soil investigation: Yarra Ranges Shire Offices, Lilydale VIC

Contents

1 Introduction	
1.1 Limitations	6
2 Scope of work	6
3 Site setting	6
4 Proposed development	7
5 Potential contaminants	7
6 Assessment Criteria	7
7 Soil investigation	7
7.1 Sample locations	7
7.2 Field observations	8
7.3 Laboratory analysis results	8
7.3.1 Fill	
7.3.2 Natural	9
8 Discussion	9
9 Conclusions	9
10 References	

Appendices

Appendix 1 Figures

Appendix 2 Tabulated laboratory data results

Appendix 3 NATA endorsed laboratory results

Current document distribution

Distributi	ion	Copy No this copy	1
Сору	Company	Name/Location	
1	Peddle Thorp Architects Pty Ltd	James Hampton (electronic copy)	
0	Connolly Environmental	Job file (11147b) (electronic copy)	

Document history

Revision	Date	Description
0	23 December 2011	Report

Current document authorisation

Report prepared by	Signature
James Allison	Janesella

Reviewed and authorised by	Signature
Paul Gruber	
Faul Grubei	

1 Introduction

Peddle Thorp Architects Pty Ltd engaged Connolly Environmental to conduct a soil investigation at 15 Anderson Street, Lilydale VIC ("the site"). The site was the location of the Yarra Ranges Shire Offices which are proposed to be redeveloped. The aim of the soil investigation was to assess the contamination status of the soil within the proposed development area for offsite disposal purposes.

Geotechnical investigations were also conducted by Hardrock geotechnical consultants as part of these works. The results of the geotechnical assessment were presented within a separate report.

1.1 Limitations

Conclusions in this report were based on site observations, testing and other information obtained by Connolly Environmental, and on the assumption that these data were representative and reliable. These conclusions must be read in conjunction with the assumptions and uncertainties included in the report. If site conditions or information different to that set out in the report are identified or appear to be present, please advise us promptly. We will re-evaluate our conclusions where necessary.

This report has been prepared for the exclusive use of the client. We have used a degree of care and skill ordinarily exercised under similar conditions by reputable members of our profession, practicing in the same or similar localities. No other warranty, expressed or implied, is made or intended.

This report is issued on the condition that it will not be altered, amended or abbreviated, issued in part or issued incomplete without our prior approval. We accept no responsibility for any loss, damage or consequence that may arise from breaches of this condition.

2 Scope of work

The scope of work comprised:

- o Identification of safe boring locations with an underground service location specialist.
- o Installation of ten soil bores to a maximum depth of 1.5 m.
- Engage geotechnical engineering contractor.
- o Collection of soil samples at a minimum of 0.2 m, 0.5 m, 1.0 m and at the base of each bore.
- A soil vapor survey using a portable photoionisation detector (PID) at each sample location.
- Laboratory analysis of selected soil samples for a range of potential contaminants of concern.
- Preparation of this report.

Soil bore locations are shown on Figure 1, Appendix 1.

3 Site setting

The site was occupied by Yarra Ranges Shire Offices. The improvements on the site included two multi-level buildings located in the centre of the site. Surrounding the buildings

were car parking, access roads as well as grassed and garden areas. The site sloped downwards to the west.

The site layout is shown in Figure 1, Appendix 1.

4 Proposed development

The proposed development includes a new building to north of the existing main building with minor building extension works to the west and north east.

Connolly has classified up to 2500 m³ of fill material and 2500 m³ of natural material for offsite disposal purposes.

5 Potential contaminants

Based on current site uses and likely historical agricultural uses, the potential contaminants of concern were assessed to be:

- Organochlorine pesticides (OCP).
- Metals.
- Petroleum hydrocarbons (TPH).
- o Polyaromatic hydrocarbons (PAH).

6 Assessment Criteria

The procedures for classifying waste are detailed in the EPA Victoria publication IWRG 621, Soil Hazard Categorisation and Management (EPA Vic, 2009).

Waste categorisation can be ascertained by comparing contaminant concentrations against table 2 thresholds. Soil concentrations exceeding Fill Material upper limits (TC0 or ASLP1) are classed as Prescribed Industrial Waste (TC0 or ASLP1), and can be categorised as:

- Category C contaminated soil
- Category B contaminated soil
- Category A contaminated soil

7 Soil investigation

The methods and procedures for all fieldwork, decontamination procedures and sample handling were consistent with the Connolly Environmental field protocols.

All laboratory analyses were conducted by NATA endorsed laboratories using NATA approved analytical methods. The primary laboratory for the project was Australian Laboratory Services (ALS). Quality control analyses were conducted by SGS Environmental (SGS).

7.1 Sample locations

Soil samples were collected from ten bore locations on site. Bore locations are shown in Figure 1, Appendix 1.

Soil samples showing the highest potential for contamination were selected for analysis based on soil vapor results, odor and visual observations. Selected samples were analysed

for EPA screen, OCP, screen metals, TPH and PAH. The tabulated analysis results are provided in Table 1, **Error! Reference source not found.**.

7.2 Field observations

At sample locations B1, B2 and B10 there was an asphalt surface underlain by crushed rock and silty clay fill to maximum 0.5 m depth. Other surface layers were grassed.

Fill across the site was silty clay and clayey silt, brown with minor sand and crushed rock. This layer may have been a disturbed natural material from cut and fill activities from previous landscaping works on site. Maximum depth of fill encountered on site was 0.9 m, but was variable.

Natural material on site consisted of silty clay and clayey silt, light brown and greyish brown with yellow mottling. Bores B7 and B10 were terminated on weathered siltstone at 1.1 m depth.

Dry to moist conditions were encountered in all bore holes except B1 at 0.5 m depth where localised perched water was encountered above the natural silty clay layer.

The soil vapor readings from the soil boring and sampling were all considered low as is summarised in table 7.1 below.

Table 7.	1 Soil vapor survey	results.
_	DID	/

Bore		PID readi	ng (ppm)	
no.	0 - 0.2 m	0.21 - 0.5 m	0.51 - 1.0 m	1.01 - 1.5m
B1	-	-	13.4-28.8	17.8
B2	22.4	17.0	8.6-12.5	6.2
В3	8.1	7.6	1.8	3.7
B4	8.6	10.6	9.8	5.9
B5	6.2	3.7	4.2	4.5
B6	3.5	4.0	5.1	2.4
B7	8.6	4.5	4.0	-
B8	2.2	1.6	0.8	1.0
B9	0.6	0.4	0.5	0.4
B10	0.9	-	0.5-0.7	

7.3 Laboratory analysis results

Tabulated soil laboratory analysis results are provided in Table 1 Appendix 2. The NATA-endorsed laboratory reports are included in Appendix 3.

7.3.1 Fill

Laboratory analysis results showed:

- Elevated concentration of total PAH at sample B1 located in the car park at 0.2 m depth in the range for EPA Category C contaminated soil.
- Elevated concentrations of nickel at two sample locations (B3 and B9) in the range for EPA Category C contaminated soil.
- Non detectable to low concentrations for all other analytes.

Laboratory leachability analysis results showed non detectable to low leachable concentrations for lead and BaP below EPA Fill upper limits.

7.3.2 Natural

Laboratory analysis results showed:

- One elevated concentration of fluoride at sample location B4/1.4 (960 mg/kg) in the range for EPA Category C material for offsite disposal purposes.
- Non detectable to low concentrations for all other analytes below EPA Fill material upper limits.

Further analysis was conducted on nine natural samples to assess fluoride levels in natural soils across the site. Laboratory analysis showed:

 Four elevated concentrations of fluoride in the range for EPA Category C material in bores B2, B3, B7 and B10.

8 Discussion

Elevated concentrations of nickel (100 mg/kg) within samples collected from bores B3 and B9 were identified. The field observations indicated basaltic gravels were present within the samples which commonly show naturally elevated levels of nickel. As such the concentrations observed were considered to be attributed to naturally elevated levels of the source material.

Elevated concentrations of fluoride (ranging between 300 and 960 mg/kg) were observed in natural soils. Analysis of natural soils for fluoride across the site showed that levels were consistently elevated which enabled us to conclude the levels were naturally elevated.

Elevated concentrations of total PAH (30mg/kg) were observed in bore B1. The sample was collected directly beneath asphalt which was drilled using solid augers. The PAH congener profile appeared consistent with that of asphalt and it was likely that the drilling process could have resulted in small fragments of asphalt to be collected within the soil sample jar. We considered these elevated concentrations within the crushed rock layer beneath the car park was due to contamination by asphalt, and was not representative of the contamination status of the crushed rock layer. The PAH concentrations in bore B1 at 0.2 m depth were considered to be an erroneous result and excluded from consideration of the contamination status of fill at the site.

9 Conclusions

From the current results obtained and based upon visual inspection at the time of sampling on site, Connolly Environmental concluded:

- Elevated concentrations of total PAH in the range for Category C contaminated soils were identified at bore B1 at 0.2 m depth. The concentrations were indicative of asphalt fragments within the sample, and were not representative of the contamination status of the crushed rock layer. The concentration was considered to be an erroneous result.
- Elevated concentrations of nickel were considered to be associated with the presence of basaltic gravels within the soil which is in the fill layer contains naturally, associated with crushed rock.
- Natural soils on site contain naturally elevated levels of fluoride.
- Fill material on site is classified as EPA Fill material with naturally elevated nickel for offsite disposal purposes.
- Natural soils were classified as EPA Fill material with naturally elevated fluoride for offsite disposal purposes.

- O Given the elevated naturally occurring concentrations of fluoride and nickel, this soil should not be used for a sensitive use. It can be disposed to landfill or used within a non sensitive use development (such as commercial/industrial). The receiver of the soils must be notified of the naturally elevated fluoride and nickel and provided with the results.
- Offsite disposal and transport of soils excavated from the site must be in accordance with EPA requirements. Please note that some landfill may require further soil sampling and analysis prior to acceptance of material for offsite disposal at their own discretion.

10 References

ANZECC (1992a) <u>Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites</u> Australian and New Zealand Environment and Conservation Council, National Health and Medical Research Council. January 1992.

ASRIS (2006) <u>Australian Soil Resource Information System</u>, CSRIO, 2006 (Access: Oct. 2009)

EPA Victoria (2009) <u>Industrial Waste Resource Guideline Publication 621: Soil Hazard Categorisation and Management</u>, EPA 2009.

Standards Australia (2005) <u>Australian Standard Guide to the sampling and investigation of potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds (AS 4482.1)</u> Standards Australia, 2005.

Standards Australia (1999) <u>Australian Standard Guide to the sampling and investigation of potentially contaminated soil Part 2: Volatile substances</u> Australian Standard 4482.2.

Appendix 1 Figures

142 Dynon Road West Melbourne Vic 3003 Australia ACN 151 466 705

ACN 151 466 705 Telephone +61 3 9372 5688 Facsimile + 61 3 9372 5699 www.connolly.com.au

1	Job Number:	Figure Number:	Revision:	Date:
	11147b	1	-	23/12/2011
Ī	Drawn By:	Checked By:	Scale:	
	PC	JA	0	10m

Legend:

B9 Soil bore location

Client: Peddle Thorpe Architects

Location: Yarra Council, Anderson St, Lilydale Vic

Subject: Soil bore locations

G:\01.Jobs\2011\111147\05.Figures\Autocad\SoilBoreLocation.dv

Appendix 2 Tabulated laboratory data results	
Appendix 2 Tabulated laboratory data results	

					CHC						_					_	_	_			_			HVOL	_	_		_	_		_	_	_		
Connolly job no.	Connolly sample no.	Lab report no.	Date sampled	Маггіх	1,2,3,4-tetrachlorobenzene	1,2,3,5-Tetrachlorobenzene	1,2,3-trichlorobenzene	1,2,4,5-tetrachlorobenzene	1,2,4-trichlorobenzene	1,2-dichlorobenzene	1,3,5-Trichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	2-ch loronaphthalene	Benzal Chloride	Benzotrichloride	Benzyl chloride	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Pentachlorobenzene	CHC (IWRG-621)	Other CHC (IWRG-621)	1,1,1,2-tetrachloroethane	1,1,1-trichloroethane	1,1,2,2-tetrachloroethane	1,1,2-trichloroethane	1,1-dichloro ethane	1,1-dichloroethene	1,1-dichloro propene	1,2,3-trichloropropane	1,2-dibromo-3-chloro propane	1,2-dibromoethane	1,2-dichloroethane	1,2-Dichloroethene [cis]
	upper limits				-	-	-	-	-	-	-	-	-	-	-	-	-	2.8	-	-	-	-	10	-	-	-	-	-	-	-	-	-	-	-	-
Catergory E	upper limits upper limits				-			-	-	-	-		-	-		-	-	11		-		1	50		-	-	-	-	-	-			-		-
Fill (crushe					-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	1		-	-	-	-	-	-	_	-	-	-		-
11147b	B1/0.2	11-51490	28/11/2011	Fill*	-						-	-			- 1		-		-	-		-		-	-		-		- 1			-	-	-	
11147b	B2/0.2	11-51490	28/11/2011	Fill*	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-		-		-	-	-	-	-	-	-
11147b	B10/0.2	11-51490	28/11/2011	Fill*	-	-		-		-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-			-	-	-		
Fill	D10/0.2	11-51480	20/11/2011			_	_	_	_		_	_				_	_	_					_	_		_		_			_		_		
11147b	B2/0.5	11-51490	28/11/2011	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	- 1	-		-	-	-	$\overline{}$
11147b	B3/0.2	11-51490	28/11/2011	Fill	-					-	-				-					-		-					-			-					-
11147b	B4/0.2	11-51490	28/11/2011	Fill				-		-			-	-		-	-	-		-	-	-	-		-		-		-	-	-	-	-		-
11147b	B5/0.2	11-51490	28/11/2011	Fill	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	ND	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
11147b	B6/0.2	11-51490	28/11/2011	Fill																		-				-					-0.0		-0.0		-
11147b	B6/0.5	11-51490	28/11/2011	Fill													-														-		-		
11147b	B7/0.5	11-51490	28/11/2011	Fill		-	-		-	-	-	-	-	-	-		-		-	-	-	-					-	-	-				-	-	
11147b	B8/0.2	11-51490	28/11/2011	Fill						-	-	-			-							-					-	-			-				
11147b	B9/0.2	11-51490	28/11/2011	Fill		-	-		-	-	-	-	-	-	-		-		-	-	-	-					-	-	-	-			-		
11147b	B509/0.2 (QAQC)	11-51490	28/11/2011	Fill		-	-			-		-			-		-		-	-	-	-			-		-		-	-					-
11147b	B609/0.2 (QAQC)	ME200543-1		Fill																		-								-				-	-
11147b	B9/0.5	11-52461	28/11/2011	Fill			-					-							-								-			-					
Natural																																			
11147b	B1/1.0	11-51490	28/11/2011	Natural	-	-	-		-	-	-	-	-	-	-					-	-	-		-		-	-	-	-			-		-	-
11147b	B1/1.5	11-53065	28/11/2011	Natural		1	1	1	1			1																							
11147b	B2/1.5	11-51490	28/11/2011	Natural		-	-			-	-	-	-	-	-				-	-	-	-					-	-	-	-	-	-		-	
11147b	B3/1.0	11-51490	28/11/2011	Natural			-		-	-	-	-	-	-	-					-	-	-					-	-	-					-	
11147b	B3/1.5	11-53065	28/11/2011	Natural																															
11147b	B4/1.4	11-51490	28/11/2011	Natural	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	ND	ND	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
11147b	B5/1.5	11-51490	28/11/2011	Natural	-	-		-		-	-		-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-		-
11147b	B6/1.0	11-51490	28/11/2011	Natural		-	-			-	-	-	-	-	-				-	-	-	-				-	-	-	-	-	-	-		-	
11147b	B6/1.5	11-53065	28/11/2011	Natural																															
11147b	B7/1.0	11-51490	28/11/2011	Natural		-	-		-	-	-	-	-	-	-				-	-	-	-					-	-	-	-	-			-	-
11147b	B8/0.5	11-51490	28/11/2011	Natural		-	-		-	-	-	-	-	-	-				-	-	-	-				-	-	-	-	-	-	-		-	
11147b	B8/1.5	11-53065	28/11/2011	Natural																															
11147b	B9/1.0	11-51490	28/11/2011	Natural		-	-		-	-		-			-					-	-	-					-		-					-	
11147b	B9/1.5	11-53065	28/11/2011	Natural		1	1	1	1			1																							
11147h	B10/1 0	11-51490	28/11/2011	Natural			-		-			-	-	-						-		_							- 1						

G G G G G G G G G G G G G G G G G G G																																					
## Part																												Inorgan	nics	MAH							
Changing Staylor Brisis	Connolly job	Connolly sample no.	Lab report no.	Date sampled	Matrix		1,2-dichloro propane	P	2,2-dichloro propane	2-chlorotoluene	4-chlorotoluene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Carbon tetrachloride	Chlorobenzene	Chlorodibromomethane	Chloroform	÷.		Dichloromethane	Trichloroethene	70	trans-1,3-dichloropropene	ō	Vinyl	Cyanide	Fluo	1,2,4-trimethylbenzene	Benzene		Cumene	Styrene	Toluene	Xylene Total	Total MAH (IWRG-
File Material speer limits File (crushed rock) File						-	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-	-	-							-	-	-	-	
File Charlest Cock File File								-										-	-		-			-			4.0					-		-			
11147b 18702 11-51490 2811/2011 Fill																																					
Fig.			11-51490	28/11/2011	Fill *	-	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-			-		-	-	-		-	-	-	-	-
Fill						-	-	-					-	-		-		-			-	-	-	-			-		-	-	-	-		-	-	-	
11147b 820.5 11-51490 2211/2011 Fill	11147b	B10/0.2	11-51490	28/11/2011	Fill*		-	-	-				-		-			-				-		-							-		-	-	-	-	
11147b	Fill																																				
11147b	11147b	B2/0.5	11-51490	28/11/2011	Fill		-	-														-									-						-
11147b	11147b	B3/0.2	11-51490	28/11/2011	Fill	-							-	-				-	-		-	-		-				-			-			-	-		-
11147D							-			-	-					-		,	,	,			-	,	,	,		,	-	-							
11147D						<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<1	<0.5	< 0.5	<0.5	٧	<1	ç,	<100	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	ND
11147b 115490 2811/2011 Fill	11147b	B6/0.2	11-51490			-	-	-	-				-	-	-			-	-	-	-	-		-	-	-	-	-			-		-	-	-	-	-
11147D B802 11-51490 28/11/2011 Fill						-	-	-	-				-	-	-			-	-	-	-	-		-	-	-	-	-			-		-	-	-	-	-
11147D 890.02 111-51490 2811/2011 Fill																																					-
11147b B80902 (AOC) 11-51490 2811/2011 Fill						-	-	-	-				-	-	-			-	-	-	-	-		-	-	-	-	-			-		-	-	-	-	-
11147b 8909.02 (10ACC) MEZORGAS-12811/2011 Fill							-	-	-				-	-	-			-	-			-	-	-			-	-			-		-	-	-	-	-
11147D 890.5 11-52461 28/11/2011 Fill							-	-	-	-	-		-		-	-	-	-			-	-	-	-		-	-		-	-	-		-	-	-	-	
Natural							-	-	-	-	-		-		-	-	-	-			-	-	-	-		-	-		-	-	-		-	-	-	-	
11147D 81/1.0 11.5366 28/11/2011 Natural		B9/0.5	11-52461	28/11/2011	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
11147b 111-55 11-53065 28/11/2011 Natural																																					
11147D 82/1.5 11.51490 28/11/2011 Natural						-	-	-	-	-	-	-	-	-	-	-	-	-																			
11147D B3/10 11-51490 28/11/2011 Natural						1																															
11147b 83/15 11-53065 28/11/2011 Natural Nat						_							-																	-	-						_
11147b 1154190 2811/2011 Natural 0.5						-	-	-					-	-		-	-	-	-	•										-							
11147D 85/1.5 11-51490 28/11/2011 Natural						-0 F	-0.5	-0 F	-0 E	-0 E	-0 E	-0 F	-0 F	-0.5	-0 E	-0.5	-0.5	-0.5	-0 E	-0 E																	
11147b 88/10 11-51490 28/11/2011 Natural						<0.5					<0.5																			<0.5							
11147D 88/1.5 11-53065 28/11/2011 Natural						-																								-							
11147b 87/10 11-51490 28/11/2011 Natural						+-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-												-	-						_
11147D 880.5 11.51490 28/17/2011 Natural						+	-	-	-				-	-	-						-									-	-		-				_
11147b B8/1.5 11-53085 28/11/2011 Natural						+-					-		-								-									-			-				_
11147D 89/10 11-51490 28/11/2011 Natural						+	-	<u> </u>	<u> </u>	-	-	-	<u> </u>	<u> </u>	<u> </u>	-	-		-	-	_	-											-				
11147b B9/1.5 11-53065 28/11/2011 Natural						+	٠.			-	-	-				-	-	-	-	-																	
						+ -	-	<u> </u>	<u> </u>	-	-	-	<u> </u>	<u> </u>	<u> </u>	-	-		-	-			-		-	-				-			H-				
						+ -													-	-					_	_											_

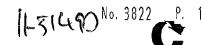
						Metals			_		_	_	_		_				OCP					_						_	_		_	_	_
	Connolly job no.	Connolly sample no.	Lab report no.	Date sampled	Matrix	Arsenic	Cadmium	Chromium (hexavalent)	Chromium (III+VI)	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Tin	Zinc	4,4-DDE	a-BHC	Aldrin	Aldrin + Dieldrin	ь-вис	Chlordane (cis)	Chlordane (trans)	д-ВНС	QQQ	DDT	DDT+DDE+DDD	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Endrin aldehyde
		upper limits				500	100	500	-	5000	1500	75	1000	3000	50	180	500	35000	-	-		1.2				-	-		50			-			-
		upper limits upper limits				2000	400	2000	-	100	6000 300	300	4000 40	12000 60	200 10	720 10	50	140000 200	-		-	4.8	-		-	-	-	-	50	-	-	-	-	-	
	crushe					20	3			100	300		40	00	10	10	30	200																	_
	147b	B1/0.2	11-51490	28/11/2011	Fill *	8	<0.2	-	24	6	9	<0.05		12	-		-	20		-	-	-			-	- 1	-	-	-	-	-	-	-		
	147b	B2/0.2	11-51490	28/11/2011	Fill *	<5	0.4	-	5	<5	8	<0.05		<5	-	-:-	-:-	36		÷		-:-	-	- :	÷	-:-	÷					-:-	- :	- :	-
	1147b	B10/0.2	11-51490	28/11/2011	Fill*	<5	0.3		21	15	39	<0.05		21				41																	
	Fill											10.00																							
	147b	B2/0.5	11-51490	28/11/2011	Fill	<5	< 0.2	-	- 8	<5	15	< 0.05	-	<5	-	-	-	<5	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
	147b	B3/0.2	11-51490	28/11/2011	Fill	<5	< 0.2	-	38	49	6	< 0.05	-	100			-	52	-	-	-				-		-	-	-		-	-			
11	147b	B4/0.2	11-51490	28/11/2011	Fill	<5	<0.2	-	8	<5	22	0.07	-	7			-	18	-	-	-					-	-	-	-		-	-			-
11	147b	B5/0.2	11-51490	28/11/2011	Fill	<5	< 0.2	<1	-	6	29	0.06	<5	<5	<3	<5	<5	22	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
11	147b	B6/0.2	11-51490	28/11/2011	Fill	<5	< 0.2		6	<5	10	< 0.05		<5				24					,	,							-			,	
	1147b	B6/0.5	11-51490	28/11/2011	Fill	<5	< 0.2		9	<5	11	< 0.05		<5			-	14	-	-					-		-								
- 11	1147b	B7/0.5	11-51490	28/11/2011	Fill	<5	<0.2		37	30	18	0.05		56				42														-			
	147b	B8/0.2	11-51490	28/11/2011	Fill	<5	<0.2	-	8	5	33	< 0.05	-	<5		-	-	29	-	-	-	-				-	-	-	-	-	-	-			-
	1147b	B9/0.2	11-51490	28/11/2011	Fill	<5	<0.2	-	15	10	20	< 0.05	-	10		-	-	37	-		-	-	-		-	-	-	-	-	-	-	-			-
	1147b	B509/0.2 (QAQC)	11-51490	28/11/2011	Fill	6	2.7	-	25	14	19	0.08	-	16		-	-	36	-		-	-				-		-	-	-	-	-			
	1147b	B609/0.2 (QAQC)	ME200543-1		Fill	<3	< 0.3	-	14	10	15	< 0.05	-	14		-	-	28	-		-	-				-		-	-	-	-	-			
	147b	B9/0.5	11-52461	28/11/2011	Fill	<5	<0.2	_	52	56	<5	<0.05	-	100	-	-	-	76	L -	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
	atural 1147b	B1/1.0	11-51490	28/11/2011	Material	-	0.0		45	-	40	0.05	_	-	_	_		_	0.05	< 0.05	0.05	0.4	< 0.05	< 0.05	0.05	0.05	0.05	<0.05	<0.15	0.05	< 0.05	0.05	<0.05	0.05	0.05
	1147b	B1/1.0 B1/1.5	11-51490	28/11/2011	Natural Natural	<5	<0.2	-	15	<5	12	0.05	-	<5 -		-	-	5	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	1147b	B2/1.5	11-53065	28/11/2011	Natural	5	<0.2	-	9	- <5	15		-	- <5	•	-	-	13	< 0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	-0.0E	<0.05	<0.05	<0.15	<0.05	-0.0E	<0.05	<0.05	<0.05	<0.05
	1147b	B3/1.0	11-51490	28/11/2011	Natural	<5	<0.2	-	9	<5	12		-	<5	-	-:-	-	<5	< 0.05	< 0.05	<0.05	<0.1	< 0.05	< 0.05	< 0.05		<0.05	<0.05	<0.15			< 0.05	< 0.05	< 0.05	<0.05
	1147b	B3/1.5	11-53065	28/11/2011	Natural	- <5	<0.2	-	9		- 12	<0.05	-	-	-	-	-	<0	<0.03	<0.05	NO.00	NO.1	<0.03	NU.U3	×0.00	<0.05	<0.05	NO.00	<0.13	<0.05	<0.03	<0.05	<0.05	<0.05	×0.00
	147b	B4/1.4	11-51490	28/11/2011	Natural	5	<0.2	<1	-	<5	20		<5	<5	10	<5	<5	11	< 0.05		<0.05	<0.1	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.15	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
	147b	B5/1.5	11-51490	28/11/2011	Natural	<5	<0.2	-	19	<5	18		-	<5	-	-	-	<5	< 0.05		< 0.05	<0.1	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	<0.15	< 0.05		< 0.05	< 0.05	< 0.05	<0.05
	147b	B6/1.0	11-51490	28/11/2011	Natural	<5	<0.2	-	11	<5	12		-	<5	-	-	-	<5	< 0.05		< 0.05	<0.1	< 0.05	< 0.05	< 0.05		<0.05	< 0.05		< 0.05		< 0.05	< 0.05		<0.05
	1147b	B6/1.5	11-53065	28/11/2011	Natural	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
	1147b	B7/1.0	11-51490	28/11/2011	Natural	<5	<0.2	-	<5	<5	10	< 0.05	-	<5	-	-	-	80	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	1147b	B8/0.5	11-51490	28/11/2011	Natural	<5	<0.2	-	8	<5	14		-	<5	-	-	-	<5	< 0.05			<0.1	< 0.05	< 0.05		< 0.05	< 0.05	< 0.05	< 0.15	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05
	1147b	B8/1.5	11-53065	28/11/2011	Natural	-	-	-	-		-	-	-	-		-	-		-	-	-	-			-	-	-	-	-			-			-
	1147b	B9/1.0	11-51490	28/11/2011	Natural	<5	<0.2	-	13	<5	11	< 0.05	-	<5		-		<5	< 0.05	<0.05	< 0.05	<0.1	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	1147b	B9/1.5	11-53065	28/11/2011	Natural	-	-	-	-		-		-	-	-	-	-		-	-	-		-				-	-	-				-	-	-
	1147b	B10/1.0	11-51490	28/11/2011	Natural	<5	0.5		10	<5	18	0.12		10				47	< 0.05	< 0.05	< 0.05	< 0.1	<0.05	<0.05	< 0.05	-0 OF	< 0.05	< 0.05	< 0.15	< 0.05	-0 OF	< 0.05	<0.05	<0.05	< 0.05

													PAH																	PCB					
													FAR																-	rcs					
Connolly job no.	Connolly sample no.	Lab report no.	Date sampled	Matrix	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Methoxychlor	Other OCP (IWR G-621)	Total OCP (IWRG-621)	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a) pyrene	Benzo(b)/luoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Naphthalene	Total PAH	Phenanthrene	Pyrene	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242		Arochlor 1254
	C upper limits				-	-	1.2	-		-	10	-		-	-	-	5	-	-		-	-				-	100		-	-	-	-	-	-	-
	B upper limits al upper limits				-	-	4.8	-	-	-	50		-	-	-	-	20	-		-	-	-	-	-	-	-	400 20	-	-	-	-	-	-	-	-
	ned rock)				-	-	-	-	-	-	-	_1_	-	-	-	-	1	-	-	•	-	-	-	-	-	-	20	-	-	-	-	-	-	-	•
11147b		11-51490	28/11/2011	Fill*		-	-		-	-	- 1		0.7	1.6	2	1.3	0.8	0.7	0.4	0.7	0.9	0.2	3.9	2.1	0.4	5.9	30	5.7	2.7			- 1	- 1	-	
11147b		11-51490	28/11/2011	Fill *	-	-	-	- :	-	-	- :		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<0.1	<0.1	-:-	- :	-	- :		-
11147b		11-51490	28/11/2011	Fill*	H :	-	-	-	-	-	-		<0.1	<0.1	<0.1	0.1	0.1	0.1	0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.6	<0.1	<0.1	-				-	-
Fill	D10/0.2	11-51480	20/11/2011	1 1111				_	_		-	_	ζ0.1	<0.1	V0.1	0.1	0.1	0.1	0.1	0.1	0.1	ζ0.1	νο. ι	ζ0.1	ζ0.1	V0.1	0.0	νο.1	VO.1		-	-		-	-
11147b	B2/0.5	11-51490	28/11/2011	Fill		-		-			-		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<0.1	<0.1					-	
11147b		11-51490	28/11/2011	Fill	-	-	-				-		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<0.1	<0.1	-		-	-	-	
11147b		11-51490	28/11/2011	Fill								-																		-				-	
11147b		11-51490	28/11/2011	Fill	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	ND	ND	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	<0.1
11147b		11-51490	28/11/2011	Fill	-	-		-		-	-		-	-	-	-	-	-	-		-	-		-	-	-	-		-	-	-	-	-		
11147b		11-51490	28/11/2011	Fill	-	-	-					-		-	-	-	-	-	-			-				-			-	-	-	-	-	-	
11147b		11-51490	28/11/2011	Fill	-	-				-	-	-	-	-	-	-	-	-			-	-				-	-		-	-	-	-	-	-	
11147b		11-51490	28/11/2011	Fill	-	-	-					-		-	-	-	-	-	-			-				-			-	-	-	-	-	-	
11147b		11-51490	28/11/2011	Fill	-	-				-	-	-	<0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	ND	< 0.1	<0.1	-	-	-	-	-	
11147b	B509/0.2 (QAQC)	11-51490	28/11/2011	Fill	-	-				-			< 0.1	< 0.1	< 0.1	0.1	0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	0.7	< 0.1	0.2	-	-	-	-	-	
11147b		ME200543-1	28/11/2011	Fill	-	-		-		-	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	ND	< 0.1	< 0.1	-	-	-	-	-	
11147b		11-52461	28/11/2011	Fill	-	-	-	-		-	-		-	-	-	-	-	-			-	-				-	-			-	-	-	-	-	
Natura																																			
11147b	B1/1.0	11-51490	28/11/2011	Natural	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	ND	ND	< 0.1	< 0.1	0.1	0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	0.3	0.1	<0.1	0.2	1.4	0.4	0.2	-	-	-	-	-	
11147b		11-53065	28/11/2011	Natural	-	-	-	-	-		-	-	-	-	-	-	-	-	-			-				-	-		-	-	-	-	-	-	
11147b		11-51490	28/11/2011	Natural	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	ND	ND	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	ND	<0.1	<0.1	<u> </u>			-		-
	B3/1.0	11-51490	28/11/2011	Natural	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	ND	ND	-		-	-	-	-	-		-	-					-				-	-	-	-	-
11147b																																			
11147b	B3/1.5	11-53065	28/11/2011	Natural	-	-	-		-	-	-	-		-	-	-			-	-	-	-				-	-	-	-	-	-	-	-	-	-
	B3/1.5		28/11/2011 28/11/2011			-	-	<0.05	-	<0.05	ND	- ND	<0.1	<0.1	<0.1	- <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	- <0.1	ND	<0.1	<0.1	- <0.1	<0.1	<0.1	<0.1		- <0.1
11147b	B3/1.5 B4/1.4	11-53065		Natural	-	-	<0.05		-				<0.1	- <0.1							<0.1	<0.1				- <0.1				- <0.1	- <0.1				- <0.1
11147b 11147b 11147b 11147b	B3/1.5 B4/1.4 B5/1.5 B6/1.0	11-53065 11-51490	28/11/2011	Natural Natural	<0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05	<0.05	ND	ND		- <0.1 -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				<0.1	<0.1		ND	<0.1	<0.1		- <0.1 -	<0.1	<0.1	<0.1 <	- <0.1 -
11147b 11147b 11147b	B3/1.5 B4/1.4 B5/1.5 B6/1.0 B6/1.5	11-53065 11-51490 11-51490 11-51490 11-53065	28/11/2011 28/11/2011 28/11/2011 28/11/2011	Natural Natural Natural	<0.05 <0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	<0.05	ND ND ND	ND ND ND		- <0.1 - -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-			<0.1	<0.1	-	ND -	<0.1	<0.1			<0.1	<0.1	<0.1 <	<0.1
11147b 11147b 11147b 11147b 11147b	B3/1.5 B4/1.4 B5/1.5 B6/1.0 B6/1.5 B7/1.0	11-53065 11-51490 11-51490 11-51490 11-53065 11-51490	28/11/2011 28/11/2011 28/11/2011 28/11/2011 28/11/2011	Natural Natural Natural Natural Natural Natural	<0.05 <0.05 <0.05 - <0.05	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 - <0.05	<0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 -	<0.05 <0.05 <0.05 - <0.05	ND ND ND -	ND ND ND - ND		- <0.1 - - -	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-		<0.1	<0.1	-	ND - -	<0.1	<0.1	-		<0.1	<0.1	<0.1 <	<0.1
11147b 11147b 11147b 11147b 11147b 11147b	B3/1.5 B4/1.4 B5/1.5 B6/1.0 B6/1.0 B7/1.0 B8/0.5	11-53065 11-51490 11-51490 11-51490 11-53065 11-51490 11-51490	28/11/2011 28/11/2011 28/11/2011 28/11/2011	Natural Natural Natural Natural Natural Natural Natural Natural	- <0.05 <0.05 <0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05 - <0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05 -	<0.05 <0.05 <0.05	ND ND ND	ND ND ND		<0.1 - - - -	<0.1	<0.1 - -	<0.1 - -	<0.1	<0.1	<0.1 - -		-		<0.1	<0.1 - -	-	ND - -	<0.1	<0.1	:		<0.1	<0.1	<0.1 <	<0.1
11147b 11147b 11147b 11147b 11147b 11147b 11147b	B3/1.5 B4/1.4 B5/1.5 B6/1.0 B6/1.5 B7/1.0 B8/0.5 B8/1.5	11-53065 11-51490 11-51490 11-51490 11-53065 11-51490 11-53065	28/11/2011 28/11/2011 28/11/2011 28/11/2011 28/11/2011 28/11/2011 28/11/2011	Natural	<0.05 <0.05 <0.05 - - <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 - <0.05 <0.05	<0.05 <0.05 <0.05 - - <0.05 <0.05	<0.05 <0.05 <0.05 - - <0.05 <0.05	<0.05 <0.05 <0.05 - <0.05 <0.05	ND ND ND - ND ND	ND ND ND - ND ND			<0.1 - - -	<0.1 - - -	<0.1 - - -	<0.1 - - -	<0.1	<0.1 - - -		-		<0.1 - - -	<0.1 - - -		ND	<0.1 - - -	<0.1 - - -	:	-	<0.1	<0.1	<0.1 <	- <0.1 - - - -
11147b 11147b 11147b 11147b 11147b 11147b 11147b 11147b	B3/1.5 B4/1.4 B5/1.5 B6/1.0 B6/1.5 B7/1.0 B8/0.5 B8/1.5	11-53065 11-51490 11-51490 11-51490 11-53065 11-51490 11-53065 11-51490	28/11/2011 28/11/2011 28/11/2011 28/11/2011 28/11/2011 28/11/2011 28/11/2011 28/11/2011	Natural	-0.05 <0.05 <0.05 -0.05 <0.05 <0.05	<0.05 <0.05 <0.05 - <0.05 <0.05	<0.05 <0.05 <0.05 - <0.05	<0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 - - <0.05 <0.05	<0.05 <0.05 <0.05 - <0.05 <0.05	ND ND ND - ND ND	ND ND ND - ND ND			<0.1	<0.1	<0.1 - - - -	<0.1 - - - -	<0.1	<0.1		-	<0.1	<0.1 - - -	<0.1 - - -		ND	<0.1	<0.1 - - - -			<0.1 - - - -	<0.1	<0.1 <	
11147b 11147b 11147b 11147b 11147b 11147b 11147b	B3/1.5 B4/1.4 B5/1.5 B6/1.0 B6/1.5 B7/1.0 B8/0.5 B8/1.5 B9/1.0 B9/1.0	11-53065 11-51490 11-51490 11-51490 11-53065 11-51490 11-53065	28/11/2011 28/11/2011 28/11/2011 28/11/2011 28/11/2011 28/11/2011 28/11/2011	Natural	<0.05 <0.05 <0.05 - - <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 - <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 - <0.05 <0.05	<0.05 <0.05 <0.05 - - <0.05 <0.05	<0.05 <0.05 <0.05 - - <0.05 <0.05	<0.05 <0.05 <0.05 - <0.05 <0.05	ND ND ND - ND ND	ND ND ND - ND ND			<0.1	<0.1 - - - -	<0.1 - - - - -	<0.1 - - - -	<0.1	<0.1 - - - -		-	<0.1	<0.1 - - -	<0.1 - - -		ND	<0.1 - - - -	<0.1 - - - - -		-	<0.1 - - - - -	<0.1 - - - -	<0.1 <	

							Phenol	s (Halog	enated)										Phenol	ls (Non-l	Halogen	ated)								TPH				
Connolly job no.	Connolly sample no.	Lab report no.	Date sampled	Matrix	Arochlor 1260	PCBs (Sum of total)	2,3,4,5-tetrachlorophenol	2,3,4,6-tetrachlorophenol	2,3,5,6-Tetrachlorophenol	2,4,5-trichlorophen ol	2,4,6-trichlorophen ol	2,4-dichlorophenol	2,6-dichlorophenol	2-chlorophenol	4-chloro-3-methylphenol	Pentachlorophenol	Phenols (Total Halogenated)	Halogenated Phenols (IWRG-621)	2,4-dimethylphenol	2,4-dinitrophenol	2-nitrophenol	4,6-Dinitro-2-methylphenol	4,6-Dinitro-o-cyclohexyl phenol	4-nitrophenol	Cresol Total	Dinoseb	Phenol	Phenols (Total Non Halogenated)	Non halogenated Phenols (IWRG-621)	TPH C6 - C9	TPH C10 - C14	TPH C15 - C28	трн с29-с36	TPH+C10 - C36 (Sum of total)
	upper limits				-	-	-	-		-	-	-	-		-	-	-	10		-	-	-	-		-	-	-	-	560	650	-	-	-	10000
	3 upper limits				-	50	-	-	-	-	-	-	-	-	-	-		320	-	-	-	-	-	-	-	-	-	-	2200	2600	-	-		40000
Fill (crushe	upper limits				-	2	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	60	100	-	-		1000
11147b	B1/0.2	11-51490	28/11/2011	Fill.*																										<20	45	270	71	386
11147b	B2/0.2	11-51490	28/11/2011	Fill *	+ -	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	<20	<20	<50	<50	ND
11147b	B10/0.2	11-51490	28/11/2011	Fill*	H :-	-	-	-	-	-	-	-	-	-	-	-		-	- i	-	-	-	-	-	-	-	-	-	-	<20	<20	<50	<50	ND
Fill	D10/0.2	11-51480	20/11/2011			_			_					_							_	_		_		_		_		120	\Z0	430	430	IND
11147b	B2/0.5	11-51490	28/11/2011	Fill	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	- 1	- 1	-
11147b	B3/0.2	11-51490	28/11/2011	Fill	-	-	-			-	-	-			-	-	-	-	-	-			-			-	-	-		-	-	-	-	-
11147b	B4/0.2	11-51490	28/11/2011	Fill	-					-	-	-			-	-	-	-			-	-	-								-		-	-
11147b	B5/0.2	11-51490	28/11/2011	Fill	<0.1	ND	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	ND	ND	< 0.5	<30	<0.5	<10	<30	< 0.5	<1	<10	< 0.5	ND	ND	<20	<20	<50	<50	ND
11147b	B6/0.2	11-51490	28/11/2011	Fill	-	-		-	-	-	-	-	-		-	-				-	-	-	-	-	-		-				-	-	-	
11147b	B6/0.5	11-51490	28/11/2011	Fill	-	-		-		-	-	-	-		-	-				-	-	-	-		-						-	-	-	
11147b	B7/0.5	11-51490	28/11/2011	Fill	-	-		-		-	-	-	-		-	-				-	-	-	-		-						-	-	-	-
11147b	B8/0.2	11-51490	28/11/2011	Fill	-	-		-		-	-	-	-		-	-	-			-	-	-	-		-				-	-	-	-	-	-
11147b	B9/0.2	11-51490	28/11/2011	Fill	-	-							-							-	-	-										-		-
11147b	B509/0.2 (QAQC)	11-51490	28/11/2011	Fill			٠												٠											٠				-
11147b	B609/0.2 (QAQC)	ME200543-1	28/11/2011	Fill	-	-		-		-	-	-	-		-	-		-		-	-	-	-		-	-	-		-		-	-	-	-
11147b	B9/0.5	11-52461	28/11/2011	Fill													-						-			-								-
Natural																																		
11147b	B1/1.0	11-51490	28/11/2011	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<20	<20	<50	<50	ND
11147b	B1/1.5	11-53065	28/11/2011	Natural	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- : -	-	-	-	
11147b	B2/1.5	11-51490	28/11/2011	Natural	-	-		-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-			-	-	<20	<20	<50	<50	ND
11147b	B3/1.0	11-51490	28/11/2011	Natural	-	-		-	-	-	-	-	-	-	-	-	-			-	-	-	-		-			-	-		-	-	-	-
11147b	B3/1.5 B4/1.4	11-53065 11-51490	28/11/2011	Natural	-	- ND		-	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	- ND	- ND		-	<0.5	-	<30	<0.5	-	-	<0.5	- ND	- ND	-	-	<50	<50	- ND
				Natural	<0.1	ND	<0.5	<0.5	<0.5		<0.5		<0.5	<0.5					<0.5	<30	<0.5	<10		<0.5	<1	<10			ND	<20	<20	<50		
11147b 11147b	B5/1.5 B6/1.0	11-51490 11-51490	28/11/2011	Natural Natural	-		-	:	-	-	-	-		-	-		-	-	-	-	-	-	-	-	:	-	-	-	-	-	-	-	-	-
11147b	B6/1.0 B6/1.5	11-51490	28/11/2011	Natural	-	-	-		- :	-	-	-			-			-	-		-	-	-			-	-	-	-	-	-	-	-	- :
11147b	B6/1.5 B7/1.0	11-53065	28/11/2011	Natural	1	-	-	-	- :	-	-	-	-	-	-	-		-	-		-	-	-	- :	-	-	-	-	-	-	-	-	-	-
11147b	B8/0.5	11-51490	28/11/2011	Natural	-	-	-	-	- :	-	-	-	-	-	-	-		-	-	-	-	-	-	- :	-	-	-	-	-	-	-	-	-	-
11147b	B8/1.5	11-51490	28/11/2011	Natural	H÷.	-	-	-	- :	-	-	-	-	- :	-	-	÷		- i			-	-	-	-	-	-	- :	-	÷	-		-:-	-:-
11147b	B9/1.0	11-53065	28/11/2011	Natural		-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-
11147b	B9/1.5	11-53065	28/11/2011	Natural	1	٠.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	١.	-	-	-	-	-	-	-	-	-	-			-
11147b	B10/1.0	11-51490	28/11/2011	Natural			-	-		-	-	—		-	-	-	-		-		-		-		-		-		-	<20	<20	<50	<50	ND

Table 2: Soil leachability results (mg/kg)

Job No: 11147b


Client: Peddle Thorp Architects Pty Ltd

Site: Lilydale

				Metals	PAH
Connolly job no.	Connolly sample no.	Lab report no.	Date sampled	Lead	Benzo(a) pyrene
Category E	B upper limit	s (leached)		4	0.004
Category C	upper limit	s (leached)		1	0.001
Soil leach	ed				
B509/0.2	B509/0.2	11-52461	28/11/2011	-	<0.001
B8/0.2	B8/0.2	11-52461	28/11/2011	0.13	-

Appendix 3 NATA endorsed la	boratory results

Laboratory: ALS Quote:

Chain of custody analysis request

Tel. +61 3 9372 5688

Connolly
Environmenta

Page

Site: LILY DALG	<u> </u>		lecte			4 C				Kes						<u> </u>		ays
Job no: 11147	P	Col	lecte	ed o	n: 🤈	28/	<u> </u>	11			_		ail:				~O	-C. Y
					-		′			<u>enq</u>	ulry(@ <u>co</u> 1	nnoll	y.co	m.aı	<u>!</u>		
Dallneylahad by		Dat			Tim			Rdo	Ave	ed by			Dat			Tim	e	\neg
Relinguished by		Dat			1 11111	0		/	O IV	<u> </u>	<u>, </u>		6-1		i.			
1		-i						1					6	-	-11			
3								 					 '					
3				_						_			· '					_
		1	, [-				~>
		引生	/۱ع	81,	28	82	87	82/	<i>Q</i> 2	B3/0-2	מס	ຕວ	~	LD.				
		$ \breve{\sigma} $	/1.0		_	<u> </u>	7	7	7	3/	83/	83,	83/1-	84,	84/	B44/1.0	84/1.4	ίŏ
	Sample ID	رمی ا	0	1.5	0.2	0.5	0,0	20	[~`	(ġ,	6		<u> </u>	10.2	1/6	1/4	7	3/6
		{				N	oo.		١٧,	7	Ÿ	0	i	.2	0.6	Ġ	1.	2
		81/0.2													٧,		-	'
		1/2					ļ	<u> </u>				<u> </u>						
Soil or Water (s or	<u></u>	3			_										_		{	7
	' 1 - 1 ID																	
	LabID																	
Amalusa																		
Analyte													ŀ					
12						<u> </u>											./	./
EPA TÜRG G	21 SCREEN	 7			7		 	 					 				V	Y
A-514		<u> </u>	<u>√</u>		V	<u> </u>		<u> </u>	<u>\</u>	- A			<u> </u>		ļ	_		
5M						-			<u> </u>	V		√	<u> </u>	V				
PAH	•					1											·	
OCP			V						J			V						
			Ť		 -			<u> </u>	<u> </u>	 		<u> </u>	t			_~-		
TPH		ļ		-	┟∸		-	-		<u> </u>		 	 			├─┈		
						<u> </u>	ļ	<u> </u>	ļ	ļ		ļ	├		ļ	-		
							L											
											Ì							
				<u> </u>	<u> </u>													
		┝┈	-				1	\vdash	╁──									
		├		-	-	_	-		 			-	 	├	-			
					<u> </u>	ļ	ļ		<u> </u>	 		<u> </u>	 	ļ	 			
							ļ	<u> </u>		<u> </u>		ļ	_		ļ		ļ	
					<u> </u>	ļ	ļ		ļ		<u> </u>		ļ	ļ		<u>_</u>		
					<u> </u>	<u> </u>						_ ا			<u> </u>			
Reporting Limits	3:										rou	ndw	ater	s as	spe	cifie	d b	у
TPH:			•	-				15-C2					~					
SM:								Ju, Zr			com	nngiti	e sam	nies i	alit or	the f	irat	
Composites:		indi	ridual	sam	ple of	the r	edne	sted c	ompo	site (unles	s oth	erwisi	Indi	cated). }	,,,,,	
PAH:		Tota	land	indly	Idual	PAH									~			
HVOL1:		HVO	L inc	ludin	g viny	l chlo												
HVQL2:							ride	to 0.0)2mg	/lltre -	wate	٢						
Voc:		HVC	L, MA	\H & :	evlos	nts				<u>, , , (</u>	I = -		12	V	<u>, </u>			
Comments:										X	PDI		<u> </u>		sult			
										1/1/	ESI	TAC	们X	Co	nnol	lly F	orm	a <u>t</u>

2011-165b TN

Laboratory: ALS Quote:

Chain of custody analysis request

Tel. +61 3 9372 5688

Connoily Environmental

Page _ 2_ of _ 3

	1				$\overline{}$				_	1.4		9	-			,1	
Site: LILYBALG	Col	lect	ed b	<u>y:</u>	9		,					ired		_\$			ays
Job no: 111476	Col	lect	ed o	n:	<u> 28/</u>	<u> /!!/</u>	<u>() </u>					ail:				וסראר	الار
									<u>enq</u>	uiry(()CO	nnoil	y.co	m.al	<u></u>		
Relinquished by	Dat	e		Tìm	e		Rec	zeive	d b			Dat	<u> </u>		Tim	8	
	Ju	1 1								<u> </u>		6,1		14			- 1
1 2 3	-	1 1				~						0	1	1			
2	'	, ,					 					1	Ĩ	~~			
<u> </u>	1 .	•					<u> </u>	_					<u>—</u>		L		
•									<u> </u>					<u> </u>			~>
	964111																
			42	ω	מח	a	14	L S	G	D23	നാ	00	 		ر ب	(JC)	F=4
Sample I	U&	133°	28	86/0.2	86	86/	86	37,	_	<u>87</u> ,	8	88,	88	8	BG	12	83
		70	-	0,	5.0	1-0	-	10-2	8.0	1	10.2	6.5)-o	_		~	//.0
	5.0	0	5	7	N	O	1.5	5	Ś	1.0	2	\v	Ø	\ <u>+</u> \	10.2	Ś	O)
		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>						<u> </u>	Ļ.	\ <u>`</u>		
Soil or Water [s or w]	ی								<u> </u>			_			<u> </u>		>_
Lab ID)								1			•					
Analyte											ĺ						
A _SUI			<u> </u>		 			ļ	<u> </u>		,						
A-514	+		1	1	1	7			1	,	/	7	\vdash	╁┈─	1		7
SM		-	<u> </u>	V	-	✓	<u> </u>		7	<u> </u>	Y	<u> </u>		├	Y		<u> ~ </u>
PAH OCP TPH		<u> </u>	ļ		ļ			ļ	ļ	<u> </u>				<u> </u>	<u>V</u>		1
OC.P			√			√	[\checkmark		V					\checkmark
TOIL		1							 								
1717	+	 	-	ļ			 	\vdash			 						
· · · · · · · · · · · · · · · · · · ·	-	ļ	ļ			-	<u> </u>	-				 	<u> </u>	 	ļ	_	ļ
				ļ	<u> </u>	<u> </u>			ļ			ļ	ļ	ļ			<u> </u>
							١.										ļ
				<u> </u>													
	+	1	 	 	 	 		t							1		†
	-		-	-		ļ	 	 	 			 	<u> </u>	-	 		
	_		ļ				<u> </u>	ļ	-		<u> </u>	ļ	<u> </u>	<u> </u>	├		ļ
														<u> </u>			
																	<u> </u>
		1															
***************************************	1	1 ~								 		1					
Reporting Limits:	Lo	w re	port	ina	limi	ts re	auir	red f	or g	rou	ndw	ater	s as	spe	cific	ed b	у
TPH:		by G													.,		·
SM:		en m															
Composites:									es on							irst	
	indi	vidual	sam	pie of	tne r	ednes	sted c	ompo	site (unies	s otn	9(W)&	e inai	Cateu	}.		
PAH:	Tota	il and	Indiv	ldual	PAH												•••
HVOL1:	HVC)L inc	ludin	g vlny	i chic	ride				~							
HVOL2:						ride (0.0	02mg	/litre -	wate	r						
VOC:	HVC	L, MA	\H & s	solvei	nte				T .7	VI		<u> جرا ا</u>	7_				_
Comments:									X	PD		+=-	-	sult			
		_							(X)	ESI	TAC	<u> </u>	Co	nno	lly F	orm	at

Chain or	custody	analysis	request
----------	---------	----------	---------

Tel. +61 3 9372 5688

Laboratory: ALS Quote:		201	1-1	65l	1T c	1							Pag	ge _	3_	of 🔼	
Site: LILYDALE		lecte										ired					ays
Job no: 111476		lecte					ŽII.		Cor	itaci	t em	ail:	J4	1V. <u>6</u>	526	CO	るる
<u> </u>					,	,			enq	ulry(@co	nnoll	у,со	m.aı	1		!
Relinquished by	Dat	e		Tim	10		Rece	√ve	d b	у		Dat	е		Tim	е	
1	1	- 1										61	[N	1			
3	-1						-					1					
3		1										/					
	=			<u> </u>	Ī								· ·				
	111476					→											
	76													!			
Sample ID	ಶ	810/0.2	88	810/1.0	CS	8510/6.2						1					
	17	%	<u>\</u>	0	0	ō											
	2.1/	2.0	2.0	12)	9	Ì											
Soil or Water [s or w]	5		· · ·		12	12					\vdash	<u> </u>		<u> </u>			
301 01 Water [5 01 W]					 	+		İ			\vdash				<u>'</u>		
Lab ID																	
Analyte																	
	ļ <u> </u>		_	<u> </u>	<u> </u>	<u> </u>		_		_	<u> </u>	├			_	 	
A-514	<u> </u>	√		\vee	ļ_,	<u> </u>					ļ						
sm				<u> </u>	✓												
PAH			-		V							<u></u>			<u> </u>		
ocp				V			1										
			•														
				\vdash	1-	1					<u> </u>						
					 	+-						<u> </u>					
	 			<u> </u>	-	 	╅	1					╁┈──		 		
	-	ļ		-		-					1		├~	┼		<u> </u>	_
	<u> </u>	 		-	-	_	-				-	-	<u> </u>		-	 	
					<u> </u>	-						-	_				
		<u> </u>								_	_	_	_	<u> </u>			
																<u> </u>	
					<u> </u>												<u> </u>
Reporting Limits:	Lov	v re	por	ting	limi	ts re	quire	d f	or g	rou	ndw	ater	s as	spe	cifi	ed b	У

TPH by GC; C6-C9, C10-C14, C15-C28, >C28 TPH: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg SM: Please do not analyse TPH, MAH or volatiles on composite samples but on the first Composites: Individual sample of the requested composite (unless otherwise indicated). Total and individual PAH PAH: **HVOL Including vinyl chloride** HVOL1: HVQL Including vinyl chloride to 0.002mg/litre - water HVOL2: HVOL, MAH & colvents VOC: PDF X Result Format Comments:

G:\08.Controlled documents\3.Job tracking & schedule of rates\Job tracking file Page 1 of 1

Connolly Environmental Ply Ltd ACN 151 466 705

X Connolly Format

ESDAT

#11-51490

Chain of custody analysis request

Tel. +61 3 9372 5688

Laboratory: ALS Quote:		201	11-1	65k	<u> TN</u>	1							Pa	ge _	ţ_	of_	
Site: LILYDALE		lect			90				Res						S		ays
Job no: 111476	Col	lect	ed o	n: 2	9/	u/	1(2001	<i>~~</i>	سن۲
						/			<u>enq</u>	uiry(@co	nnoll	y.co	m.aı	<u> </u>		
Relinquished by	Dat	е		Tim	е		Rec	eive	d b	у		Dat			Tim	е	
1 ///	61	121	1/	101	5		Pete	w	Van	Fe	ten	61	121	11	/(1/5	_
2./-/	/	Ī					Ca	m				61	121	11	1	130	2_
3													1				
						1		i	1	<u> </u>							,
·	三七万	18	13	(TO)	Ø	Um.			-								->
	Ţ.			2/	82,	129	82/	82	B3/0-2	B3/6.5	B3/	တ	84,	a_{7}	المتا	دعي	(2)
Sample ID	l	1.0	- \ - \	10.2	0	-		>	19	12	12	83/1-	1/	84/	148	48	<i>B</i> 5/
Sample ID	8		۷,	6	0.5	8.0	1.0	1.5	l,	أزرا	7.0	7	10.2		/1.0	_	
	5				້ໍ	$ \infty $			l`	\ \	١	\walpha	12	9.6	0	1	14
	81/0-2															"	
Soil or Water [s or w]	5	 ~~					-	 	 	_		-			-		→
	<u> </u>			<u> </u>													
Lab ID																	
Analyte	1			ľ													
					<u> </u>	ļ	<u> </u>		<u> </u>	ļ		<u> </u>	<u> </u>	<u> </u>			
EPA TWEE 621 SCREEN																	
A-514	1	1		V				/									
	–	 	,	Ť	1			 	1		1		J		-		
3M	ļ				7			-	/		1		1		ļ		
PAH		,			'			/	V		,						
OCP		\checkmark			· .			-	<u> </u> `		\checkmark				}	<u> </u>	
TPA	-	ļ <u>.</u>					$oxed{oxed}$	<u> </u>	<u> </u>			<u> </u>			ļ		ļ
				 			1										
	<u> </u>		ļ	-				1	-	 	-	 		-	-	 	_
	 		_	-					-		-	-	<u> </u>	 	-	-	
	<u></u>			<u> </u>		_	_					<u> </u>		ļ	<u> </u>		-
								ļ					ļ. <u></u>		<u> </u>		<u> </u>
Reporting Limits:	Lov	v re	port	ing	limit	ts re	quir	ed 1	or g	rou	ndw	ater	s as	spe	cifi	ed b	У
TPH:	TPH	by G	C; C6	-C9, C	10-C	14, C	15-C2	8, >C	28								
SM:							cu, Zn								- 41	• 4	
Composites:	Plea	se do /idual	not a sam	ınalys ple of	e TPI the re	H, MA eques	H or v	onpo	les on osite (unles	posite s oth	erwise	pies l e indi	out or cated	n tne i).	irst	
PAH:	Tota	l and	indiv	idual	PAH												
HVOL1:				y viny													
HVOL2:				_		ride (o 0.0 0	02mg	/litre -	wate	r						
VOC:	HVO	L, MA	\H & s	solver	nts				-/)			p		For		
Commontos									VY/	IPDI	F	1 / 1/2/2	مم1R	eulf	For	mat	

Connolly Format

Chain of custody analysis request

Tel. +61 3 9372 5688

Site: LILYBALG Collected by: PC Result required: S days Job no: 111476 Collected on: 29/11/11 Contact email: JAMES & COMMONDY enquiry@connolly.com.au Relinquished by Date Time Received by Date Time 1 61/11/11 1015 Peter Van Eete 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Laboratory: ALS Qu	iote:		201	11-1	65k										ge_	2	of_	
Relinquished by Date Time Received by Date Time	Site: LILYBALG							,	,										
Relinquished by Date Time Received by Date Time Peter VanEete 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Job no: 111476		Col	lect	ed o	n:	29.	<u>/11/</u>	<u>() </u>									ادرادا	LLY
Sample ID Sample ID Sample ID Soil or Water [s or w] Lab ID Analyte A-SILL SM PAH Total and Individual PAH HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride INVOL2: HVOL including vinyl chloride INVOL2: HVOL including vinyl chloride II I I I I I I I I I I I I I I I I I I							Ť				enq	uiry(@co	nnol	y.co	m.aı	<u>1</u>		
Soil or Water [s or w] Soil or Water [s or w] Lab ID Analyte A - SIH SPAH PAH: Total and individual PAH Total and	Relinguished by		Dat	e		Tim	e		Rec	eive	ed b	У					Tim	e	
Sample ID Sample ID Sample ID Soil or Water [s or w] Lab ID Lab ID Analyte A — SILI SM PA H Total and individual Sample of the requested composite (unless otherwise indicated). PAH: Total and individual Sample of the requested composite (unless otherwise indicated). PAH: Total and individual Sample of the requested composite (unless otherwise indicated). PAH: Total and individual Sample of the requested composite (unless otherwise indicated). PAH: Total and individual Sample of the requested composite (unless otherwise indicated). PAH: Total and individual Sample of the requested composite (unless otherwise indicated). PAH: Total and individual Sample of the requested composite (unless otherwise indicated). PAH: HVOL: HVOL including vinyl chloride HVOL:	1///		61	111	i/	/0	15	_	Pe	eter	-Ve	int	ele	16 I	121	(1	/o.	15	
Sample ID Soil or Water [s or w] Lab ID Analyte A — SILH MA —	2													<i>I</i>	1				
Soil or Water [s or w] Lab ID Analyte A — SILH SM PA H CP TPH TPH by GC, C6-C9, C10-C14, C15-C28, >C28 Smit. Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL 1: HVOL including vinyl chloride HVOL micluding vinyl chloride HVOL: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL micluding vinyl chloride to 0.002mg/litre - water VOC: HVOL: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL micluding vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents X PDF Result Format	3		1											1	' 1			_	
Soil or Water [s or w] Lab ID Analyte A — SILH SM PA H CP TPH TPH by GC, C6-C9, C10-C14, C15-C28, >C28 Smit. Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL 1: HVOL including vinyl chloride HVOL micluding vinyl chloride HVOL: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL micluding vinyl chloride to 0.002mg/litre - water VOC: HVOL: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL micluding vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents X PDF Result Format									l	l									<u> </u>
Soil or Water [s or w] Lab ID Analyte A — SILH SM PA H CP TPH TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, Ae, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL 1: HVOL including vinyl chloride HVOL 2: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents X PDF Result Format	,		1																′
Soil or Water [s or w] Lab ID Analyte A — SILH SM PA H CP TPH TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, Ae, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL 1: HVOL including vinyl chloride HVOL 2: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents X PDF Result Format			2		_	_		(L)											
Soil or Water [s or w] Lab ID Lab ID Analyte A — SIH SM PAH CP TPH TH by Gc, Ge-Ge, Gr. Cot-Jr, Cris-C28, -228 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested domposite (unless otherwise indicated). PAH: Total and individual PAH HVOL 1: HVOL including vinyi chloride HVOL: HVOL including vinyi chloride Experiments: X PDF Result Format	· Sa	ample ID		B.	88	18	136	6	B6	[27,	[23]	120	8	128	188	200	80	2	123
Soil or Water [s or w] Lab ID Analyte A - S1 ^L SM PAH CP TPH TPH: SG: G6-G9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, NI, Cd, Cr, Cu, Zn, As, Hg Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride VCC: HVOL, MAH & solvents X PDF X Result Format		-	Š			3				I >>∽		· ·		0	-	<u> </u>	_	_	
Soil or Water [s or w] Lab ID Analyte A - S1 ^{L1} SM PA H CP TPH TPH by GC; G6-Q3, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, NI, Cd, Cr, Cu, Zn, As, Hg Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL1: HVOL2: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride HVOL5: HVOL6: HVOL6: HVOL7: HVOL7: HVOL7: HVOL7: HVOC6: HVOL7: HVOL7: HVOL7: HVOL8 As solvents X PDF Result Format			5	O	S	14	N	O	is	6	is	0	3	S	Q	in	7	(^	Ø
Analyte A - SILH SM PAH Total and individual PAH HVOL1: HVOL2: HVOL including vinyl chloride to 0.002mg/litre - water WOC: Comments: X PDF X Result Format						ļ	<u> </u>				<u> </u>		ļ			<u> </u>	1,2		<u> </u>
Analyte A - SILH SM PAH CP TPH Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C8-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL1: HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride HVOL2: HVOL, MAH & solvents X PDF Result Format	Soil or Water [s or w]		S			<u> </u>	<u> </u>		<u> </u>	 	<u> </u>	<u></u>	<u> </u>	<u> </u>		. 4		<u> </u>	<u>† ~ </u>
Analyte A - SILH SM PAH CP TPH Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C8-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL1: HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride HVOL2: HVOL, MAH & solvents X PDF Result Format		Lahin																	
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals Pic Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL 1: HVOL including vinyl chloride HVOL: HVOL including vinyl chloride HVOL including vinyl chloride HVOL: HVOL including vinyl chloride		Labib																	
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals Pic Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL 1: HVOL including vinyl chloride HVOL: HVOL including vinyl chloride HVOL including vinyl chloride HVOL: HVOL including vinyl chloride	Analyte																		
PAH: Total and individual PAH HVOL1: HVOL2: HVOL2: HVOL2: HVOL, MAH & solvents TOR PAN	Allalyto																ľ		_
PAH: Total and individual PAH HVOL1: HVOL2: HVOL2: HVOL2: HVOL, MAH & solvents TOR PAN	A-S14																		
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL: HVOL including vinyl chloride HVOL: HVOL including vinyl chloride HVOL: HVOL including vinyl chloride to 0.002mg/litre - water HVOL: HVOL including vinyl chloride to 0.002mg/litre - water HVOL: HVOL including vinyl chloride to 0.002mg/litre - water HVOL: HVOL including vinyl chloride to 0.002mg/litre - water	SM				\	1	1	1			1	1	1				V .		1
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL: HVOL including vinyl chloride HVOL: HVOL including vinyl chloride HVOL: HVOL including vinyl chloride to 0.002mg/litre - water HVOL: HVOL including vinyl chloride to 0.002mg/litre - water HVOL: HVOL including vinyl chloride to 0.002mg/litre - water HVOL: HVOL including vinyl chloride to 0.002mg/litre - water	PAH				-												1	- 52	,
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL: HVOL including vinyl chloride HVOL: HVOL including vinyl chloride HVOL: HVOL including vinyl chloride to 0.002mg/litre - water HVOL: HVOL including vinyl chloride to 0.002mg/litre - water HVOL: HVOL including vinyl chloride to 0.002mg/litre - water HVOL: HVOL including vinyl chloride to 0.002mg/litre - water	000				1	-		1		-		1		1					V
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: HVOL including vinyl chloride HVOL: HVOL including vinyl chloride HVOL: HVOL including vinyl chloride HVOL: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents	201				'	<u> </u>		Ť			<u> </u>			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					<u> </u>
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents X PDF Result Format	TPIT										ļ <u> </u>								
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents X PDF Result Format											ļ				-			<u> </u>	-
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents X PDF Result Format				ļ														ļ	
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents X PDF Result Format																			
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents X PDF Result Format																			
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents X PDF Result Format																			
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents X PDF Result Format										 	†		1						
Reporting Limits: Low reporting limits required for groundwaters as specified by TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents X PDF X Result Format							 						1 10	Fan.		,	ļ	\dagger	1
TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL1: HVOL2: HVOL2: HVOL, MAH & solvents Comments: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: HVOL1: HVOL1: HVOL1: HVOL2: HVOL3: HVOL4: HVOL5: HVOL5: HVOL5: HVOL5: HVOL5: HVOL5: HVOL6: HVOL6: HVOL7: H		·			-		<u> </u>		 	 	-		 	 	1			+-	
TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL1: HVOL2: HVOL2: HVOL, MAH & solvents Comments: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: HVOL1: HVOL1: HVOL1: HVOL2: HVOL3: HVOL4: HVOL5: HVOL5: HVOL5: HVOL5: HVOL5: HVOL5: HVOL6: HVOL6: HVOL7: H						-	ļ <u>.</u>	<u></u>	-							<u> </u>		-	+
TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL1: HVOL2: HVOL2: HVOL, MAH & solvents Comments: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: HVOL1: HVOL1: HVOL1: HVOL2: HVOL3: HVOL4: HVOL5: HVOL5: HVOL5: HVOL5: HVOL5: HVOL5: HVOL6: HVOL6: HVOL7: H				ļ		!			 	+		ļ	-	-		<u> </u>		 	
TPH: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Composites: Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL1: HVOL2: HVOL2: HVOL, MAH & solvents Comments: TPH by GC; C6-C9, C10-C14, C15-C28, >C28 Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: HVOL1: HVOL1: HVOL1: HVOL2: HVOL3: HVOL4: HVOL5: HVOL5: HVOL5: HVOL5: HVOL5: HVOL5: HVOL5: HVOL5: HVOL6: HVOL6: HVOL7: H	Reporting Limites		Lo	N re	nor‡	ina l	limit	e re	uni:	ed f	or a	rou	ndw	ater	s as	sne	cifi	ed h	 •V
SM: Screen metals: Pb, Ni, Cd, Cr, Cu, Zn, As, Hg Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride to 0.002mg/litre - water HVOC: HVOL, MAH & solvents X PDF Result Format												. Ju		~	- 40	-120	· • · · · ·	N	<u></u>
individual sample of the requested composite (unless otherwise indicated). PAH: Total and individual PAH HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents X PDF X Result Format			Scre	en m	etals:	Pb, N	li, Cd,	Cr, C	Cu, Zr	ı, As,	Hg							-	
HVOL1: HVOL including vinyl chloride HVOL2: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents Comments: X PDF X Result Format	Composites:																	first	
HVOL2: HVOL including vinyl chloride to 0.002mg/litre - water VOC: HVOL, MAH & solvents Comments: X PDF X Result Format	PAH:		Tota	l and	indiv	idual	PAH												
VOC: HVOL, MAH & solvents Comments: X PDF X Result Format			ı		-														
Comments: X PDF X Result Format								ride t	0.0	02mg	/litre -	wate	r						
			HVO	L, MA	лк	SOIVE	ILS .				Ý.	חם	=	10	Ro	21114	For	met	
	Comments:										, ,	1			1				

Chain of custody analysis request

Tel. +61 3 9372 5688

Laboratory: ALS Quote:		201	1-1	65k										ge	3		
Site: LILY DALE		lecte		-		۷.						ired		5			ays
Job no: 111476	Col	lecte	ed o	n:	29.	/11	/11							ME		100 E	3,40
						•		Ĺ	enqu	uiry((COI	noll	y.co	m.au			
Relinguished by	Dat			Tim	e		Rec	eive	d h	,		Date			Tim	e	
		1 2	<i>f.</i>		15		Pa	40 -	1///	11 1						0/5	
2		1		/ 4	, ,		10	ter	VU	7 (lala	$\frac{1}{I}$	<u> </u>				
1 () () () () () () () () () (1	$\dot{\overline{I}}$		A.2		
[3	,			<u> </u>			ļ										l
,	Ξ								ļ	i							
	111476			egaines		->	\rightarrow										
	1				l	<u>س</u>											
Sample ID	89,	810/0-2	000	BIO	B509/0.2	8510/6.2	<u>B</u>]/] -									
		100	\ <u>\</u>	0	0	Ō	0.6										
	1.5	5	8:0	0	2	10	5										
0-9	<u> </u>	<u> </u>	V'	U	12	2					<u> </u>			-			
Soil or Water [s or w]	5					7	7	<u> </u>			<u> </u>			<u>† </u>			
Lab ID																	
Labib																	
Analyte												'					
Allalyte																	İ '
A < 11	1	17		./					9								
A-S14	<u> </u>	4		<u>~</u>				 	<u> </u>								<u> </u>
SM	-			 										ŀ		٠.	
PAH	ļ				✓			ļ									
ocp				$ \sqrt{\ } $													
	ļ			-					<u> </u>	:				_			1
				ļ		ļ <u>-</u>						ļ		<u> </u>		-	<u> </u>
	ļ						ļ	_				ļ					<u></u>
]					
																	Ì
	1		 	-			<u> </u>	1						1			_
	-	-	-	-	-												
	_	_	1	-	<u> </u>		-		-		-			-	-	-	
				_				ļ		ļ	ļ		-				-
	<u> </u>	ļ	-	<u> </u>	_		ļ	.			ļ	<u> </u>				<u> </u>	<u> </u>
	<u> </u>				<u> </u>		<u>L</u>		<u></u>		<u> </u>	<u> </u>			L	<u> </u>	1
Reporting Limits:	Lo	w re	port	ing	limi	ts re	qui	red f	or g	rou	ndw	ater	s as	spe	cifie	ed b	<u>y</u>
TPH:		-	-					8, >C2								-	
SM:								n, As, l volatil		com	posite	sam	ples l	but on	the f	īrst	
Composites:	indi	viduai	sam	ple of	the r	eques	sted c	ompo	site (ı	unies	s oth	erwise	indi	cated)).		
PAH:	Tota	l and	indiv	idual	PAH												
HVOL1:	1	L inc															
HVOL2:						oride	to 0.0	02mg/	litre -	wate	r						
VOC:	HVC	L, MA	\H & :	solve	nts				1 -43	T==-		16	}				
Comments:									<u>/X/</u>	PD				sult			
									/X/	ESI	DAT	X	Co	nnol	ly F	orm	at

Environmental Division (Water Resources Group)

CERTIFICATE OF ANALYSIS

Batch No: 11-51490 Page Page 1 of 15

Final Report 269368 Laboratory Scoresby Laboratory

Address Caribbean Business Park, 22 Dalmore Drive, Scoresby, VIC 3179
Phone 03 8756 8000

 Client:
 Connolly Environmental
 Phone Fax
 03 8756 8000 9763 1862

 Contact:
 James Allison
 Contact:
 Contact:

Address: 142 Dynon Road Contact: Tuyen Nguyen
Client Manager

WEST MELBOURNE VIC 3003 Tuyen.Nguyen@alsglobal.com

Client Program Ref:11147b - LilydaleDate Sampled:28-Nov-2011ALS Program Ref:CONNOLLYDate Samples Received:06-Dec-2011PO No:Not AvailableDate Issued:12-Dec-2011

	ole(s) referred to in this report we							
Analysis	Method	Laboratory	Analysis	Method	Laboratory	Analysis	Method	Laboratory
снс	VIC-CM045	Melbourne	Cyanide	VIC-CM073	Melbourne	Total Fluoride	VIC-CM090	Melbourne
HVOL	VIC-CM047	Melbourne	MAH	VIC-CM051 & CM047	Melbourne	MS Total Metals	VIC-CM050 C	Melbourne
ОСР	VIC-CM048	Melbourne	PAH	VIC-CM043	Melbourne	PCB	VIC-CM048	Melbourne
Phenols(Halo)	VIC-CM056	Melbourne	Phenols(NonHalo)	VIC-CM056	Melbourne	Total Cr 6+	VIC-CM089	Melbourne
ТРН	VIC-CM030	Melbourne						

Signatories

These results have been electronically signed by the authorised signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11

Name	Title	Name	Title
Hao Zhang	Principal Organic Chemist	John Earl	Team Leader - Metals
Michael Clahsen	Principal Inorganic Chemist	Stuart Paarman	Technical Officer - Chem

Environmental 🚴

www.alsglobal.com

RIGHT SOLUTIONS FUGHT PARTIES

 Page:
 Page 2 of 15

 Batch No:
 11-51490

 Report Number:
 269368

Client: Connolly Environmental

Client Program Ref: 11147b - Lilydale

	Analysis:	Total Fluoride	Cyanide	Total Cr 6+
Soil Analysis Sample Sampled Date Your Ref	Component: Units: Sample Type	Total Fluoride mg/kg	CN mg/kg	Total Cr6+ mg/kg
2843495 28-11-11 B4/1.4	SOIL	960	<5	<1
2843496 28-11-11 B5/0.2	SOIL	<100	<5	<1

Soil Metals	Analysis:	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals
	Component:	As	Cd	Cr	Cu	Pb	Hg	Мо	Ni	Se
Sample Sampled Date Your Ref	Units:	mg/kg								
	Sample Type				_					
2843480 28-11-11 B1/0.2	SOIL	8	<0.2	24	6	9	<0.05		12	
2843481 28-11-11 B1/1.0	SOIL	<5	<0.2	15	<5	12	0.05		<5	
2843483 28-11-11 B2/0.2	SOIL	<5	0.4	5	<5	8	<0.05		<5	
2843484 28-11-11 B2/0.5	SOIL	<5	<0.2	8	<5	15	<0.05		<5	
2843487 28-11-11 B2/1.5	SOIL	5	<0.2	9	<5	15	0.05		<5	
2843488 28-11-11 B3/0.2	SOIL	<5	<0.2	38	49	6	<0.05		100	
2843490 28-11-11 B3/1.0	SOIL	<5	<0.2	9	<5	12	<0.05		<5	
2843492 28-11-11 B4/0.2	SOIL	<5	<0.2	8	<5	22	0.07		7	
2843495 28-11-11 B4/1.4	SOIL	5	<0.2		<5	20	0.05	<5	<5	10
2843496 28-11-11 B5/0.2	SOIL	<5	<0.2		6	29	0.06	<5	<5	<3
2843499 28-11-11 B5/1.5	SOIL	<5	<0.2	19	<5	18	<0.05		<5	
2843500 28-11-11 B6/0.2	SOIL	<5	<0.2	6	<5	10	<0.05		<5	
2843502 28-11-11 B6/0.5	SOIL	<5	<0.2	9	<5	11	<0.05		<5	
2843503 28-11-11 B6/1.0	SOIL	<5	<0.2	11	<5	12	<0.05		<5	
2843506 28-11-11 B7/0.5	SOIL	<5	<0.2	37	30	18	0.05		56	
2843507 28-11-11 B7/1.0	SOIL	<5	<0.2	<5	<5	10	<0.05		<5	
2843508 28-11-11 B8/0.2	SOIL	<5	<0.2	8	5	33	<0.05		<5	
2843509 28-11-11 B8/0.5	SOIL	<5	<0.2	8	<5	14	<0.05		<5	
2843512 28-11-11 B9/0.2	SOIL	<5	<0.2	15	10	20	<0.05		10	
2843514 28-11-11 B9/1.0	SOIL	<5	<0.2	13	<5	11	<0.05		<5	
2843516 28-11-11 B10/0.2	SOIL	<5	0.3	21	15	39	<0.05		21	
2843518 28-11-11 B10/1.0	SOIL	<5	0.5	10	<5	18	0.12		10	
2843519 28-11-11 B509/0.2	SOIL	6	2.7	25	14	19	0.08		16	

Page: Page 3 of 15 Batch No: 11-51490 Report Number: 269368

Client: **Connolly Environmental**

Client Program Ref: 11147b - Lilydale

Soil Met	tale	Analysis:	MS Total Metals	MS Total Metals	MS Total Metals
	Sampled Date Your Ref	Component: Units: Sample Type	Ag mg/kg	Sn mg/kg	Zn mg/kg
2843480 2	28-11-11 B1/0.2	SOIL			20
2843481 2	28-11-11 B1/1.0	SOIL			5
2843483	28-11-11 B2/0.2	SOIL			36
2843484 2	28-11-11 B2/0.5	SOIL			<5
2843487 2	28-11-11 B2/1.5	SOIL			13
2843488 2	28-11-11 B3/0.2	SOIL			52
2843490 2	28-11-11 B3/1.0	SOIL			<5
2843492 2	28-11-11 B4/0.2	SOIL			18
2843495 2	28-11-11 B4/1.4	SOIL	<5	<5	11
2843496 2	28-11-11 B5/0.2	SOIL	<5	<5	22
2843499 2	28-11-11 B5/1.5	SOIL			<5
2843500 2	28-11-11 B6/0.2	SOIL			24
2843502 2	28-11-11 B6/0.5	SOIL			14
2843503 2	28-11-11 B6/1.0	SOIL			<5
2843506 2	28-11-11 B7/0.5	SOIL			42
2843507 2	28-11-11 B7/1.0	SOIL			80
2843508 2	28-11-11 B8/0.2	SOIL			29
2843509 2	28-11-11 B8/0.5	SOIL			<5
2843512 2	28-11-11 B9/0.2	SOIL			37
2843514 2	28-11-11 B9/1.0	SOIL			<5
2843516 2	28-11-11 B10/0.2	SOIL			41
2843518 2	28-11-11 B10/1.0	SOIL			47
2843519 2	28-11-11 B509/0.2	SOIL			36
			-		-

Soil MAH	Analysis:	MAH	MAH	MAH	MAH	MAH	MAH	MAH
Sample Sampled Date Your Ref	Component: Units: Sample Type	BENZ mg/kg	TOLUENE mg/kg	ETHBENZ mg/kg	XYLENE mg/kg	STYRENE mg/kg	CUMENE mg/kg	124TMBEN mg/kg
2843495 28-11-11 B4/1.4	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2843496 28-11-11 B5/0.2	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

 Page:
 Page 4 of 15

 Batch No:
 11-51490

 Report Number:
 269368

Client: Connolly Environmental

Client Program Ref: 11147b - Lilydale

Soil TPH	Analysis:	TPH	TPH	TPH	TPH
Sample Sampled Date Your Ref	Component: Units: Sample Type	TPHC6+ mg/kg	TPHC10+ mg/kg	TPHC15+ mg/kg	TPHC29+ mg/kg
2843480 28-11-11 B1/0.2	SOIL	<20	45	270	71
2843481 28-11-11 B1/1.0	SOIL	<20	<20	<50	<50
2843483 28-11-11 B2/0.2	SOIL	<20	<20	<50	<50
2843487 28-11-11 B2/1.5	SOIL	<20	<20	<50	<50
2843495 28-11-11 B4/1.4	SOIL	<20	<20	<50	<50
2843496 28-11-11 B5/0.2	SOIL	<20	<20	<50	<50
2843516 28-11-11 B10/0.2	SOIL	<20	<20	<50	<50
2843518 28-11-11 B10/1.0	SOIL	<20	<20	<50	<50

Soil PAH	Analysis:	ACE	ACY	ANT	BAA	BAP	BBF	BGP	BKF	CHR
Sample Sampled Date Your F	Component: Ref Units: Sample Type	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2843480 28-11-11 B1/0.2	SOIL	0.7	1.6	2.0	1.3	0.8	0.7	0.4	0.7	0.9
2843481 28-11-11 B1/1.0	SOIL	<0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843483 28-11-11 B2/0.2	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843484 28-11-11 B2/0.5	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843487 28-11-11 B2/1.5	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843488 28-11-11 B3/0.2	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843495 28-11-11 B4/1.4	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843496 28-11-11 B5/0.2	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843512 28-11-11 B9/0.2	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843516 28-11-11 B10/0.2	SOIL	<0.1	<0.1	<0.1	0.1	0.1	0.1	0.1	0.1	0.1
2843518 28-11-11 B10/1.0	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843519 28-11-11 B509/0.2	SOIL	<0.1	<0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1	0.1

 Page:
 Page 5 of 15

 Batch No:
 11-51490

 Report Number:
 269368

Client: Connolly Environmental

Client Program Ref: 11147b - Lilydale

Soil PA	ш	Analysis:	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	
	Sampled Date Your Ref	Component: Units: Sample Type	DBA mg/kg	FLA mg/kg	FLU mg/kg	IPY mg/kg	NAP mg/kg	PHE mg/kg	PYR mg/kg	TOTPAHs mg/kg	
2843480	28-11-11 B1/0.2	SOIL	0.2	3.9	2.1	0.4	5.9	5.7	2.7	30	
2843481	28-11-11 B1/1.0	SOIL	<0.1	0.3	0.1	<0.1	0.2	0.4	0.2	1.4	
2843483	28-11-11 B2/0.2	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2843484	28-11-11 B2/0.5	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2843487	28-11-11 B2/1.5	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2843488	28-11-11 B3/0.2	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2843495	28-11-11 B4/1.4	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2843496	28-11-11 B5/0.2	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2843512	28-11-11 B9/0.2	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2843516	28-11-11 B10/0.2	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.6	
2843518	28-11-11 B10/1.0	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2843519	28-11-11 B509/0.2	SOIL	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	0.2	0.7	
		Analysis:	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
Soil O.	C. Pesticides	Commonant	ABHC	AENDOSUL	ALDR	BBHC	BENDOSUL	cis-Chlordane	trans-Chlordane	DBHC	DDD
Sample	Sampled Date Your Ref	Component: Units: Sample Type	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2843481	28-11-11 B1/1.0	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843487	28-11-11 B2/1.5	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843490	28-11-11 B3/1.0	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843495	28-11-11 B4/1.4	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843496	28-11-11 B5/0.2	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843499	28-11-11 B5/1.5	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843503	28-11-11 B6/1.0	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843507	28-11-11 B7/1.0	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843509	28-11-11 B8/0.5	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
			2.25	-0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843514	28-11-11 B9/1.0	SOIL	< 0.05	<0.05	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~ 0.03	10.00	10.00	10.00	10.00	0.00

Page: Page 6 of 15 Batch No: 11-51490 Report Number: 269368

Client: **Connolly Environmental**

Client Program Ref: 11147b - Lilydale

Soil O.C. Pesticides	Analysis:	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
Son O.C. Pesticides Sample Sampled Date Your Ref	Component: Units: Sample Type	DDE mg/kg	DDT mg/kg	DIEL mg/kg	ENDOS mg/kg	ENDR mg/kg	ENDRALD mg/kg	ENDRKET mg/kg	HCB mg/kg	HEPEP mg/kg
2843481 28-11-11 B1/1.0	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843487 28-11-11 B2/1.5	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843490 28-11-11 B3/1.0	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843495 28-11-11 B4/1.4	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843496 28-11-11 B5/0.2	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
843499 28-11-11 B5/1.5	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
843503 28-11-11 B6/1.0	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
843507 28-11-11 B7/1.0	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
843509 28-11-11 B8/0.5	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
843514 28-11-11 B9/1.0	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843518 28-11-11 B10/1.0	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	Analysis:	OCP	OCP	OCP						

Soil O.C. Pesticides	Analysis:	OCP	OCP	OCP
Sample Sampled Date Your Ref	Component: Units: Sample Type	HEPT mg/kg	LIND mg/kg	METHOX mg/kg
2843481 28-11-11 B1/1.0	SOIL	<0.05	<0.05	<0.05
2843487 28-11-11 B2/1.5	SOIL	<0.05	<0.05	<0.05
2843490 28-11-11 B3/1.0	SOIL	<0.05	<0.05	<0.05
2843495 28-11-11 B4/1.4	SOIL	<0.05	<0.05	<0.05
2843496 28-11-11 B5/0.2	SOIL	<0.05	<0.05	<0.05
2843499 28-11-11 B5/1.5	SOIL	<0.05	<0.05	<0.05
2843503 28-11-11 B6/1.0	SOIL	<0.05	<0.05	<0.05
2843507 28-11-11 B7/1.0	SOIL	<0.05	<0.05	<0.05
2843509 28-11-11 B8/0.5	SOIL	<0.05	<0.05	<0.05
2843514 28-11-11 B9/1.0	SOIL	<0.05	<0.05	<0.05
2843518 28-11-11 B10/1.0	SOIL	<0.05	<0.05	<0.05

Soil PCBs	Analysis:	PCB	------------------------------	-------------------------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-----------------
Sample Sampled Date Your Ref	Component: Units: Sample Type	1016ARCL mg/kg	1221ARCL mg/kg	1232ARCL mg/kg	1242ARCL mg/kg	1248ARCL mg/kg	1254ARCL mg/kg	1260ARCL mg/kg	TOTPCB mg/kg			
2843495 28-11-11 B4/1.4	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
2843496 28-11-11 B5/0.2	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			

 Page:
 Page 7 of 15

 Batch No:
 11-51490

 Report Number:
 269368

Client: Connolly Environmental

Client Program Ref: 11147b - Lilydale

Soil CHCe	Analysis:	CHC	CHC	CHC	CHC	CHC	CHC	CHC	CHC	CHC
Soil CHCs Sample Sampled Date Your Ref	Component: Units: Sample Type	1234TCB mg/kg	1235TCB mg/kg	123TCB mg/kg	1245TCB mg/kg	124TCB mg/kg	12DCB mg/kg	135TCB mg/kg	13DCB mg/kg	14DCB mg/kg
2843495 28-11-11 B4/1.4	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843496 28-11-11 B5/0.2	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Soil CHCs	Analysis:	CHC	CHC	CHC	CHC	CHC	CHC	CHC	CHC
Sample Sampled Date Your Ref	Component: Units: Sample Type	2CLNAPHT mg/kg	BENZALCL mg/kg	BENZTCL mg/kg	BENZYLCL mg/kg	HEXCLANE mg/kg	HEXCLBUT mg/kg	HEXCLCYP mg/kg	PENTCLBE mg/kg
2843495 28-11-11 B4/1.4	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843496 28-11-11 B5/0.2	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

	Analysis:	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)
Phenois (Halogenated) Sample Sampled Date Your Ref	Component: Units: Sample Type	4Chlor3MethylPhnl mg/kg	2-ChloroPhenol mg/kg	24DiChloroPhenol mg/kg	2,6DiChloroPhenol mg/kg	PentaChlorPhenol mg/kg	2345TetraChloPhnl mg/kg	2346TetraChloPhnl mg/kg	2356TetraChloPhnl mg/kg	245TriChlorPhenol mg/kg
2843495 28-11-11 B4/1.4	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2843496 28-11-11 B5/0.2	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Phenols (Halogenated)	Analysis:	Phenols(Halo)	Phenols(Halo)
Sample Sampled Date Your Ref	Component: Units: Sample Type	246TriChlorPhenol mg/kg	Total Phenols (Halo) mg/kg
2843495 28-11-11 B4/1.4	SOIL	<0.5	<0.5
2843496 28-11-11 B5/0.2	SOIL	<0.5	<0.5

Phenols (Non Halogenated) Sample Sampled Date Your Ref	Analysis:	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)
	Component: Units: Sample Type	Phenol mg/kg	Total Cresols mg/kg	2,4DiMethylPhenol mg/kg	2,4-Dinitrophenol mg/kg	2Mthyl46DiNitrPhnl mg/kg	2-NitroPhenol mg/kg	4-NitroPhenol mg/kg	2CyHxl46DiNitPhnl mg/kg	Dinoseb mg/kg
2843495 28-11-11 B4/1.4	SOIL	<0.5	<1	<0.5	<30	<10	<0.5	<0.5	<30	<10
2843496 28-11-11 B5/0.2	SOIL	<0.5	<1	<0.5	<30	<10	<0.5	<0.5	<30	<10

 Page:
 Page 8 of 15

 Batch No:
 11-51490

 Report Number:
 269368

Client: Connolly Environmental

Client Program Ref: 11147b - Lilydale

Phenols (Non Halogenated)	Analysis:	Phenols(NonHalo)
Sample Sampled Date Your Ref	Component: Units: Sample Type	Total Phenols(NonH) mg/kg
2843495 28-11-11 B4/1.4	SOIL	<30
2843496 28-11-11 B5/0.2	SOIL	<30

Soil Halo. Volatiles	Analysis:	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
Sample Sampled Date Your Ref	Component: Units: Sample Type	1112TetraClEthane mg/kg	1122TetraClEthane mg/kg	1,1DiChloroEthane mg/kg	1,1DiChloroEthene mg/kg	11DiChlorPropene mg/kg	123TriChlPropane mg/kg	12DiBr3ChlPrpane mg/kg	12DiChlorEthene[c] mg/kg	12DiChlorEthene[t] mg/kg
2843495 28-11-11 B4/1.4	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2843496 28-11-11 B5/0.2	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Soil Halo. Volatiles Sample Sampled Date Your Ref	Analysis:	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
	Component: Units: Sample Type	12DiChloroEthane mg/kg	12 DiChloPropane mg/kg	13DiChlorPropane mg/kg	13DiChlPropene[c] mg/kg	13DiChlPropene[t] mg/kg	22DiChlorPropane mg/kg	2-ChloroToluene mg/kg	4-ChloroToluene mg/kg	BromChloMethane mg/kg
2843495 28-11-11 B4/1.4	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2843496 28-11-11 B5/0.2	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Soil Halo. Volatiles	Analysis:	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
Sample Sampled Date Your Ref	Component: Units: Sample Type	BroDiChloMethane mg/kg	BromoBenzene mg/kg	Bromoform mg/kg	CarbonTetChloride mg/kg	Chloroform mg/kg	ChloroBenzene mg/kg	DiBroChloMethane mg/kg	DiBromoMethane mg/kg	12DiBromoEthane mg/kg
2843495 28-11-11 B4/1.4	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2843496 28-11-11 B5/0.2	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Soil Halo. Volatiles	Analysis:	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
Sample Sampled Date Your Ref	Component: Units: Sample Type	DiChloroMethane mg/kg	TriChloFluMethane mg/kg	TetraChloroEthene mg/kg	Vinyl Chloride mg/kg	111TriChlorEthane mg/kg	112TriChlorEthane mg/kg	TriChloroEthene mg/kg
2843495 28-11-11 B4/1.4	SOIL	<1	<2	<0.5	<1	<0.5	<0.5	<0.5
2843496 28-11-11 B5/0.2	SOIL	<1	<2	<0.5	<1	<0.5	<0.5	<0.5

 Page:
 Page 9 of 15

 Batch No:
 11-51490

 Report Number:
 269368

Client: Connolly Environmental

Client Program Ref: 11147b - Lilydale

Quality Control

Soil CHCs	CHC	CHC	CHC	CHC	CHC	CHC	CHC	CHC	CHC
3011 311 31 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1234TCB	1235TCB	123TCB	1245TCB	124TCB	12DCB	135TCB	13DCB	14DCB
2843580 DUPLICATE Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843580 DUPLICATE Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843580 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2843580 SPIKE Sample Value	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843580 SPIKE Expected Value	1.4		1.4	2.7	1.4	1.4	1.4	1.4	1.4
2843580 SPIKE % Recovery	77.8		86.4	74.8	90.0	93.0	87.6	84.2	84.6
2847025 BLANK Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Soil CHCs	CHC	CHC	CHC	CHC	CHC	CHC	CHC	CHC
Our orres	2CLNAPHT	BENZALCL	BENZTCL	BENZYLCL	HEXCLANE	HEXCLBUT	HEXCLCYP	PENTCLBE
2843580 DUPLICATE Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843580 DUPLICATE Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843580 DUPLICATE % RPD	0	0	0	0	0	0	0	0
2843580 SPIKE Sample Value	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1
2843580 SPIKE Expected Value	1.4	1.4	1.4		1.4	1.4	1.4	1.4
2843580 SPIKE % Recovery	86.8	88.2	89.4		86.4	87.8	82.2	84.8
2847025 BLANK Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Soil Halo, Volatiles	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
	1112TetraClEthane	1122TetraClEthane	1,1DiChloroEthane	1,1DiChloroEthene	11DiChlorPropene	123TriChlPropane	12DiBr3ChlPrpane	12DiChlorEthene[c]	12DiChlorEthene[t]
2844792 DUPLICATE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2844792 DUPLICATE Duplicate Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2844792 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2847077 BLANK Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Soil Halo. Volatiles	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
on Halo. Folkino	12DiChloroEthane	12 DiChloPropane	13DiChlorPropane	13DiChlPropene[c]	13DiChlPropene[t]	22DiChlorPropane	2-ChloroToluene	4-ChloroToluene	BromChloMethane
2844792 DUPLICATE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2844792 DUPLICATE Duplicate Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2844792 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2847077 BLANK Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

 Page:
 Page 10 of 15

 Batch No:
 11-51490

Report Number: 269368

Client: Connolly Environmental

Client Program Ref: 11147b - Lilydale

Soil Halo. Volatiles	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL
	BroDiChloMethane	BromoBenzene	Bromoform	CarbonTetChloride	Chloroform	ChloroBenzene	DiBroChloMethane	DiBromoMethane	12DiBromoEthane
2844792 DUPLICATE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2844792 DUPLICATE Duplicate Valu	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2844792 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2847077 BLANK Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Soil Halo. Volatiles	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL	HVOL		
	DiChloroMethane	TriChloFluMethane	TetraChloroEthene	Vinyl Chloride	111TriChlorEthane	112TriChlorEthane	TriChloroEthene		
2844792 DUPLICATE Sample Value	<1	<2	<0.5	<1	<0.5	<0.5	<0.5		
2844792 DUPLICATE Duplicate Valu	<1	<2	<0.5	<1	<0.5	<0.5	<0.5		
2844792 DUPLICATE % RPD	0	0	0	0	0	0	0		
2847077 BLANK Value	<1	<2	<0.5	<1	<0.5	<0.5	<0.5		
Soil MAH	MAH	MAH	MAH	MAH	MAH	MAH	MAH	· [
	BENZ	TOLUENE	ETHBENZ	XYLENE	STYRENE	CUMENE	124TMBEN		
2843558 DUPLICATE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
2843558 DUPLICATE Duplicate Valu	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
2843558 DUPLICATE % RPD	0	0	0	0	0	0	0		
2844719 SPIKE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
2844719 SPIKE Expected Value	4.3	4.3	4.3	13	4.3	4.3	4.3		
2844719 SPIKE % Recovery	99.3	97.9	97.8	97.3	92.1	95.5	88.1		
2847072 BLANK Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Soil O.C. Pesticides	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
	ABHC	AENDOSUL	ALDR	BBHC	BENDOSUL	cis-Chlordane	trans-Chlordane	DBHC	DDD
2843580 DUPLICATE Sample Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843580 DUPLICATE Sample value		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843580 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2843566 SPIKE Sample Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843566 SPIKE Sample Value Expected Value		1.6	1.6	2.7	1.6	1.6	1.6	3.1	1.6
2843566 SPIKE	95.6	108	115	102	105	116	114	110	103
2847045 BLANK Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
		1	1	1	1	l .	I.		
Soil O.C. Pesticides	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
	DDE	DDT	DIEL	ENDOS	ENDR	ENDRALD	ENDRKET	HCB	HEPEP
2843580 DUPLICATE Sample Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843580 DUPLICATE Duplicate Valu	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

 Page:
 Page 11 of 15

 Batch No:
 11-51490

Report Number: 269368

Client: Connolly Environmental

		ОСР	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
		DDE	DDT	DIEL	ENDOS	ENDR	ENDRALD	ENDRKET	HCB	HEPEP
2843580 DUPLICATE % RPD		0	0	0	0	0	0	0	0	0
2843566 SPIKE	Sample Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2843566 SPIKE	Expected Value	1.6	1.6	1.6	1.6	1.6	1.6	1.6	2.8	1.6
2843566 SPIKE	% Recovery	108	111	104	94.4	97.4	91.2	107	103	113
2847045 BLANK	Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Soil O.C. Pesticides	OCP	OCP	OCP
3011 3.3.1 33ttolidas	HEPT	LIND	METHOX
2843580 DUPLICATE Sample Value	<0.05	<0.05	<0.05
2843580 DUPLICATE Duplicate Value	<0.05	<0.05	<0.05
2843580 DUPLICATE % RPD	0	0	0
2843566 SPIKE Sample Value	<0.05	<0.05	<0.05
2843566 SPIKE Expected Value	1.6	3.1	1.6
2843566 SPIKE % Recovery	109	98.2	120
2847045 BLANK Value	<0.05	<0.05	<0.05

Soil PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
Soli FAIT	ACE	ACY	ANT	BAA	BAP	BBF	BGP	BKF	CHR
2843341 DUPLICATE Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843341 DUPLICATE Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843341 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2843578 SPIKE Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843578 SPIKE Expected Value	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
2843578 SPIKE % Recovery	95.0	96.0	99.0	88.0	102	96.0	102	96.0	104
2846785 BLANK Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843580 SPIKE Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843580 SPIKE Expected Value	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
2843580 SPIKE % Recovery	92.4	99.8	107	101	98.4	102	99.4	91.2	101
2843566 DUPLICATE Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843566 DUPLICATE Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843566 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2847038 BLANK Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

 Page:
 Page 12 of 15

 Batch No:
 11-51490

Report Number: 269368

Client: Connolly Environmental

Soil PAH		PAH							
SOILFAIT		DBA	FLA	FLU	IPY	NAP	PHE	PYR	TOTPAHs
2843341 DUPLICATE	Sample Value	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1
2843341 DUPLICATE	Duplicate Value	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1
2843341 DUPLICATE	% RPD	0	0	0	0	5.6	0	0	0.0
2843578 SPIKE	Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2843578 SPIKE	Expected Value	1.3	1.3	1.3	1.3	1.3	1.3	1.3	
2843578 SPIKE	% Recovery	113	92.0	97.0	104	103	97.0	94.0	
2846785 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843580 SPIKE	Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2843580 SPIKE	Expected Value	1.4	1.4	1.4	1.4	1.4	1.4	1.4	
2843580 SPIKE	% Recovery	113	105	97.4	120	100	108	107	
2843566 DUPLICATE	Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843566 DUPLICATE	Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2843566 DUPLICATE	% RPD	0	0	0	0	0	0	0	0
2847038 BLANK	Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Soil PCBs	PCB	-----------------------------------	----------	----------	----------	----------	----------	----------	----------	--------
Our r obs	1016ARCL	1221ARCL	1232ARCL	1242ARCL	1248ARCL	1254ARCL	1260ARCL	TOTPCB		
2843580 DUPLICATE Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
2843580 DUPLICATE Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
2843580 DUPLICATE % RPD	0	0	0	0	0	0	0	0		
2843580 SPIKE Sample Value	<0.1						<0.1			
2843580 SPIKE Expected Value	2.6						2.5			
2843580 SPIKE % Recovery	102						103			
2847050 BLANK Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		

Phenols (Halogenated)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)	Phenols(Halo)
Thenois (Halogenatea)	4Chlor3MethylPhnl	2-ChloroPhenol	24DiChloroPhenol	2,6DiChloroPhenol	PentaChlorPhenol	2345TetraChloPhnl	2346TetraChloPhnl	2356TetraChloPhnl	245TriChlorPhenol
2843580 DUPLICATE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2843580 DUPLICATE Duplicate Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2843580 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2843566 SPIKE Sample Value	<0.5	<0.5	<0.5	<0.5			<0.5		<0.5
2843566 SPIKE Expected Value	1.6	1.6	1.6	1.6			3.1		1.6
2843566 SPIKE % Recovery	96.8	96.0	92.8	87.2			79.2		82.2
2847033 BLANK Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

 Page:
 Page 13 of 15

 Batch No:
 11-51490

Report Number: 269368

Client: Connolly Environmental

Phenols (Halogenated)	Phenols(Halo)	Phenols(Halo)
· ···o···o··o (···ai·o·go···ai·o·a)	246TriChlorPhenol	Total Phenols (Halo)
2843580 DUPLICATE Sample Value	<0.5	<0.5
2843580 DUPLICATE Duplicate Value	<0.5	<0.5
2843580 DUPLICATE % RPD	0	0
2843566 SPIKE Sample Value	<0.5	
2843566 SPIKE Expected Value	1.6	
2843566 SPIKE % Recovery	78.8	
2847033 BLANK Value	<0.5	<0.5

Phenols (Non Halogenated)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)	Phenols(NonHalo)
Thenois (Non Halogenated)	Phenol	Total Cresols	2,4DiMethylPhenol	2,4-Dinitrophenol	2Mthyl46DiNitrPhnl	2-NitroPhenol	4-NitroPhenol	2CyHxl46DiNitPhnl	Dinoseb
2843580 DUPLICATE Sample Value	<0.5	<1	<0.5	<30	<10	<0.5	<0.5	<30	<10
2843580 DUPLICATE Duplicate Value	<0.5	<1	<0.5	<30	<10	<0.5	<0.5	<30	<10
2843580 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2843566 SPIKE Sample Value	<0.5	<1	<0.5			<0.5			
2843566 SPIKE Expected Value	1.6	4.7	1.6			1.6			
2843566 SPIKE % Recovery	96.4	92.2	94.4			92.2			
2847029 BLANK Value	<0.5	<1	<0.5	<30	<10	<0.5	<0.5	<30	<10

Phenols (Non Halogenated)	Phenols(NonHalo)
· ····································	Total Phenols(NonH)
2843580 DUPLICATE Sample Value	<30
2843580 DUPLICATE Duplicate Value	<30
2843580 DUPLICATE % RPD	0
2847029 BLANK Value	<30

Soil Analysis		Total Fluoride	Cyanide	Total Cr 6+
Soli Alialysis		Total Fluoride	CN	Total Cr6+
2843366 SPIKE	Sample Value			<1
2843366 SPIKE	Expected Value			80
2843366 SPIKE	% Recovery			85.8
2844192 DUPLICAT	ΓΕ Sample Value			<1
2844192 DUPLICAT	ΓΕ Duplicate Value			<1
2844192 DUPLICA	TE % RPD			0
2843584 SPIKE	Sample Value		<5	
2843584 SPIKE	Expected Value		20	
2843584 SPIKE	% Recovery		92.1	

 Page:
 Page 14 of 15

 Batch No:
 11-51490

Report Number: 269368
Client: Connolly Environmental

			Total Fluoride	Cyanide	Total Cr 6+
			Total Fluoride	CN	Total Cr6+
2843366	DUPLICATE	Sample Value		<5	
2843366	DUPLICATE	Duplicate Value		<5	
2843366	DUPLICATE	% RPD		0	
2847693	BLANK	Value	<100		
2843350	DUPLICATE	Sample Value	<100		
2843350	DUPLICATE	Duplicate Value	<100		
2843350	DUPLICATE	% RPD	0		
2843541	SPIKE	Sample Value	170		
2843541	SPIKE	Expected Value	340		
2843541	SPIKE	% Recovery	84.5		

Soil Metals		MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals
JOII WIELAIS		As	Cd	Cr	Cu	Pb	Hg	Мо	Ni	Se
2843488 DUPLICATE	Sample Value	<5	<0.2	38	49	6			100	
2843488 DUPLICATE	Duplicate Value	<5	<0.2	37	51	7			110	
2843488 DUPLICATE	% RPD	0	0	1.1	5.4	17.5			8.0	
2843516 SPIKE	Sample Value	<5	0.3			39	<0.05		21	
2843516 SPIKE	Expected Value	100	100			140	1.0		120	
2843516 SPIKE	% Recovery	81.1	101			92.8	97.8		84.2	
2847239 BLANK	Value	<5	<0.2	<5	<5	<5	<0.05	<5	<5	<3
2844477 DUPLICATE	Sample Value	<5	<0.2	12	<5	6	<0.05		<5	<3
2844477 DUPLICATE	Duplicate Value	<5	<0.2	13	<5	8	<0.05		<5	<3
2844477 DUPLICATE	% RPD	0	0	6.4	0	18.3	0		0	0
2844477 SPIKE	Sample Value	<5	<0.2	12	<5	6	<0.05		<5	<3
2844477 SPIKE	Expected Value	100	100	110	100	110	1.0		100	100
2844477 SPIKE	% Recovery	86.5	99.7	82.8	80.7	92.5	95.3		84.9	88.4
2847510 BLANK	Value	<5	<0.2	<5	<5	<5	<0.05	<5	<5	<3

Soil Metals		MS Total Metals	MS Total Metals	MS Total Metals
Jon Metals		Ag	Sn	Zn
2843488 DUPLICATE Sa	ample Value			52
2843488 DUPLICATE Du	uplicate Value			56
2843488 DUPLICATE %	RPD			7.2
2843516 SPIKE Sa	ample Value			41
2843516 SPIKE Ex	rpected Value			140
2843516 SPIKE %	Recovery			87.2

 Page:
 Page 15 of 15

 Batch No:
 11-51490

Report Number: 269368

Client: Connolly Environmental

	MS Total Metals	MS Total Metals	MS Total Metals
	Ag	Sn	Zn
2847239 BLANK Value	<5	<5	<5
2844477 DUPLICATE Sample Value	<5		5
2844477 DUPLICATE Duplicate Value	<5		6
2844477 DUPLICATE % RPD	0		10.6
2844477 SPIKE Sample Value	<5	<5	5
2844477 SPIKE Expected Value	1.0	100	100
2844477 SPIKE % Recovery	86.0	95.0	91.3
2847510 BLANK Value	<5	<5	<5

Soil TPH		TPH	TPH	TPH	TPH
3011 IFH		TPHC6+	TPHC10+	TPHC15+	TPHC29+
2845039 SPIKE	Sample Value			<50	
2845039 SPIKE	Expected Value			890	
2845039 SPIKE	% Recovery			106	
2843734 DUPLICATE	Sample Value	<20	<20	<50	<50
2843734 DUPLICATE	Duplicate Value	<20	<20	<50	<50
2843734 DUPLICATE	% RPD	0	0	0	0
2847208 BLANK	Value	<20	<20	<50	<50
2843578 DUPLICATE	Sample Value	<20	<20	<50	140
2843578 DUPLICATE	Duplicate Value	<20	<20	<50	130
2843578 DUPLICATE	% RPD	0	0	0	8.6
2843578 SPIKE	Sample Value			<50	
2843578 SPIKE	Expected Value			950	
2843578 SPIKE	% Recovery			104	
2847950 BLANK	Value	<20	<20	<50	<50

Chain of custody analysis request

Tel. +61 3 9372 5688

Laboratory: ALS Quote:	2011-165b TN	Page _ _ of _ _
Site: LIMDAGE	Collected by: PC	Result required: STD days
Job no: 11147 B	Collected on: 3	Contact email: JAMES
1000 1101 1/1/1/10		enquiry@connolly.com.au

Relinquished by		Date	€		Tim	e		Rec	eive	d by			Date			Tim	e		
1			<i>I I</i>						Jones Form					121	7.1	1500			
2		1											1	1					
3	11											1	- 1						
<u> </u>															_				
	Sample ID	1114713-11/1.5	1 -82/1.5	-83/1.5	- 135/1.5	-36/1.5	0-1/48-	-B8/1.5	2-1/1-S	V - 510/10	,			-					
Soil or Water [s or w]		S								\rightarrow					ļ	<u> </u>			
Analyte	Lab ID	2843482	8	16	99	284350K	િ	1 1	1.5	8)									
		77			ļ	7				(_	ļ		_	
Fl.		/	~		~	<u>~</u>	~	V	V	<i></i>					<u> </u>			_	
-							-		_						-				
							-												
·															ļ		<u> </u>		
					<u> </u>							ļ				-	-	-	
					_	-							-			-	ļ	-	
									-				-				_		
												-					-		
Reporting Limits:		Lo	v re	por	ting	imi	ts re	qui	red f	or g	rou	ndw	ater	s as	sp	ecifi	ed b	y	
TPH:		TPH	by G	C; C6	-C9, C	10 C	14, C	15-C2	8, >C2	28									
SM: Composites:		Plea	se do	not	: Pb, N analys ple of	e TPI	H. MA	H or v	volati	es on	com	posit s oth	e sam erwis	ples e ind	but o	n the	first		
PAH: HVOL1:					ridual g viny		orlde												
HVOL1:		HVO	L Inc	ludin	g viny	chic	ride	to 0.0	02mg	/litre -	wate	r							
VOC:					solve														
Comments:										X	PD	F	X			For			
										X	ES	DAT	Х	Cc	nnc	lly F	orn	at	

G:\05.Controlled documents\3.Job tracking & schedule of rates\Job tracking file Page 1 of 1

Connolly Environmental Pty Ltd ACN 151 466 705

Client:

Environmental Division (Water Resources Group)

CERTIFICATE OF ANALYSIS

Page Batch No: 11-53065 Page 1 of 3

Final Report 271733 Laboratory Scoresby Laboratory

> Address Caribbean Business Park, 22 Dalmore Drive, Scoresby, VIC 3179 Phone 03 8756 8000

Connolly Environmental Fax 03 9763 1862 Contact: James Allison Contact: Tuyen Nguyen

Address: 142 Dynon Road Client Manager

WEST MELBOURNE VIC 3003 Tuyen.Nguyen@alsglobal.com

Client Program Ref: 11147b - Lilydale Date Sampled: 06-Dec-2011 ALS Program Ref: CONNOLLY Date Samples Received: 19-Dec-2011 PO No: Date Issued: Not Available 22-Dec-2011

The sample(s) referred to in this report were analysed by the following method(s):

- NATA accreditation does not cover the performance of this service

Analysis Method Method Method Laboratory Analysis Laboratory Laboratory Analysis

Total Fluoride VIC-CM090 Melbourne

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

These results have been electronically signed by the authorised signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11

Name	Title	Name	Title
Michael Clahsen	Principal Inorganic Chemist		

Environmental 🊴

 Page:
 Page 2 of 3

 Batch No:
 11-53065

 Report Number:
 271733

Client: Connolly Environmental

Soil Ar	nalvsis		Analysis:	Total Fluoride
Sample	Sampled D	ate Your Ref	Component: Units: Sample Type	Total Fluoride mg/kg
2860396	06-12-11	B1/1.5	SOIL	440
2860397	06-12-11	B2/1.5	SOIL	460
2860398	06-12-11	B3/1.5	SOIL	640
2860399	06-12-11	B5/1.5	SOIL	300
2860400	06-12-11	B6/1.5	SOIL	350
2860401	06-12-11	B7/1.0	SOIL	960
2860402	06-12-11	B8/1.5	SOIL	400
2860403	06-12-11	B9/1.5	SOIL	380
2860404	06-12-11	B10/1.0	SOIL	800

 Page:
 Page 3 of 3

 Batch No:
 11-53065

 Report Number:
 271733

Client: Connolly Environmental

Client Program Ref: 11147b - Lilydale

Quality Control

Soil An	alveie		Total Fluoride
Oon An	iaiyolo		Total Fluoride
2864273	BLANK	Value	<100
2858035	DUPLICATE	Sample Value	220
2858035	DUPLICATE	Duplicate Value	230
2858035	DUPLICATE	% RPD	4.6
2865772	BLANK	Value	<100
2860838	SPIKE	Sample Value	230
2860838	SPIKE	Expected Value	380
2860838	SPIKE	% Recovery	90.8

Chain of custody analysis request

Tel. +61 3 9372 5688

Environmental

Laboratory: ALS Quote:				65D				7			_		_		<u></u> '		
Site: LILYDALE	Coll				PC			Result required: 4 days Contact email: James									
Job no: 1/147B	Coll	ecte	d o	n:													_
								<u>en</u>	qui	iry@)con	noli	/.co	m.au	!		
Balineylahad by	Date	a		Time	<u> </u>	R	eceiv	ed.	bν			Date			Tim		
Relinquished by	Jan			Time			Received by				13/12/11				1500		
1 2 3	1	$-\dot{\tau}$	~			+			_			$\frac{\Box}{I}$		`.			\neg
2	1	'				╁						<u> </u>	1				\neg
<u> </u>						<u> </u>				_			····			-	\equiv
Sample ID	111476-810/0.2		- 08/0.2	~ -8509/02									•				
Soil or Water [s or w]	5	5	9	5	_	+		+	+						<u> </u>		
Lab ID Analyte	2543516	£1.}	808														
ASLP Bap	┷			$ \underline{\vee} $		+		+	_					-			
ASU Ph	<u> </u>		✓			1			\perp			<u> </u>		ļ	<u> </u>		
SM		1													<u> </u>		
	 						\dashv										
	╁		<u> </u>	╢─┤		+	+	+	-†						1	\vdash	
	ļ					+						 		╁──			
		L				_ _		\bot						ــــــ		<u> </u>	-
			ľ			1								<u>L</u>			ļ
						$\neg \vdash$											
•	1			1			_					T					
	1	<u> </u>	1			+						<u> </u>			1-		
	+	\vdash				+			\dashv		-	├	-	+	├~	ļ	
	-	<u> </u>	<u> </u>	 		\downarrow	\perp				_	 	 	<u> </u>	ļ	<u> </u>	 -
	<u> </u>	_	ļ	ļ		_		\perp			\vdash	\vdash	ـ	\vdash	-	<u> </u>	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>		_		_				-	-	+	+		-
	ļ						بـــــ				- 45: : :	<u></u>	<u></u>	<u></u>	<u>L.,</u>	<u> </u>	<u></u>
Reporting Limits:	Lo	v re	por	ting	imits 10-C14,	req	ulred	tot I	ʻ gı	roui	naw	ater	s as	s sp	eÇITİ	a De	<u>y</u>
TPH: SM:					10-014, i, Cd, Cr												
Composites:	Piea	se do	not	analys	e TPH, N the requ	λAΗ	or vola	tiles	on	com	posite s oth	e sam erwis	ples e ind	but o icated	n the '	first	
PAH:	Tota	al and	Indiv	/idual	PAĤ												
HVOL1:	HVC	L inc	ludin	g vlny	chlorid				***************************************								
HVOL2:					chlorid	e to	0.002n	ng/liti	re -	wate	r						
VOC:	HVC)L, M	& H	solvet	ıts			1	~	DD.		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	le:	0114	For		
Comments:										PDI	DAT		<u> </u>		lly F		

															7		
Chain of custo	dy anal	ysi	s req	ues	t	٦	el. +	61	3 93	72 56	88		Env	on /iror	nol l	y ntal	
Laboratory: ALS Qu			2011-1										Page	<u> </u>	10	of <u>\</u>	
Site: LILYDALE	1010.		ected f						Resu	ılt re	qui	ired:	Ч	_		da	ays
Job no: 1/1478			ected o										Jane				_
000.101.1(1.1.10									enqu	iry@	con	noll	/.com	ı.au		*****	
m nl.h. d les	— т	Date	<u> </u>	Tim		Ii	Réce	ivé	d by			Date		Ţ	Time	 B	
Relinguished by		<u>pate</u> /	1	3 11 31		-1	/ /	7				_	12/1	1	15	SC	\mathcal{L}
1		~ '	.			ď			***			13 /	1	`			
3			.		~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•••					1	1				
J						<u>-</u> -							1				
Soil or Water [s or w] Analyte	ample ID	2848516 4 1111973-01010-2	5.0/68-71-4111 0 . 513														
ASLP Bap		1										<u> </u>					
ASLP PL		1															
			/														
5 rA		<u> </u>		-													
				-	+ 1											Π	
		├ ─			-				-			\vdash	-			 	
									_			-	 		l	\vdash	-
				_	ļļ				 			-					╁──
						, —			ļ							-	
															 	 	ـــــــ
-													<u> </u>				
		-		\top													
			+-	_	+		1		1-			1	1 1		T		
		ļ	┿┿	_	-	<u> </u>	-			 		-			_	-	1
		-		-	-		 		 	1		+	\uparrow		1	+	T
		-	1	_		<u> </u>	-		-	+	_	 	╁╌┤		-	+	+
		ļ.	w repo	_4	12 14	<u></u>		o ~1	for a	#011°) chia	ista	re se	sn	<u>l</u> ecifi	ed t)V
Reporting Limits:	<u> </u>	LO,	w repo	CG-C9	010-01	14. C	:4um 15-C28	. >0	228	, oui	104		- U3	<u> </u>			
TPH: SM:		Scre	on metal	s: Ph.	NI. Cd.	Cr. (Cu. Zn.	As	, Hg								
Composites:		Plea	se do no	t analy	se TPI	I, MÃ	Horv	ola	tiles or	comp	oosi	te san	nples b	ut o	n the	first	_

Composites:

PAH:

HVOL1:

HVOL2:

Comments:

VOC:

X Result Format

X Connolly Format

HVOL Including vinyl chloride to 0.002mg/litre - water

Total and Individual PAH

HVOL, MAH & solvents

HVOL including vinyl chloride

Individual sample of the requested composite (unless otherwise indicated).

X PDF

X ESDAT

Client:

Address:

Environmental Division (Water Resources Group)

142 Dynon Road

CERTIFICATE OF ANALYSIS

Phone

Page Batch No: 11-52461 Page 1 of 3

Final Report 270415 Laboratory Scoresby Laboratory

> Address Caribbean Business Park, 22 Dalmore Drive, Scoresby, VIC 3179

Connolly Environmental Fax 03 9763 1862 Contact: James Allison Contact: Tuyen Nguyen

Client Manager

03 8756 8000

WEST MELBOURNE VIC 3003 Tuyen.Nguyen@alsglobal.com

Client Program Ref: 11147b - Lilydale Date Sampled: 28-Nov-2011 ALS Program Ref: CONNOLLY Date Samples Received: 14-Dec-2011 PO No: Date Issued: Not Available 16-Dec-2011

The sample(s) referred to in this report were analysed by the following method(s):

- NATA accreditation does not cover the performance of this service

Analysis Method Analysis Method Analysis Laboratory Method Laboratory Laboratory

VIC-CM082 VIC-CM043; VIC-CM050 C; ASLP(Acetate) Prep Melbourne ASLP(Acet.) PAH Melbourne MS ASLP(Acet) Melbourne

(AS4439.3)

VIC-CM082 VIC-CM082 Metals VIC-CM050 C Melbourne MS Total Metals

Signatories

These results have been electronically signed by the authorised signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11

Name	Title	Name	Title
Hao Zhang	Principal Organic Chemist	John Earl	Team Leader - Metals

Environmental 🊴

Page: Page 2 of 3 Batch No: 11-52461 270415

Report Number:

Client: **Connolly Environmental**

Soil Metals	Analysis:	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals
Sample Sampled Date Your Ref	Component: Units: Sample Type	As mg/kg	Cd mg/kg	Cr mg/kg	Cu mg/kg	Pb mg/kg	Hg mg/kg	Ni mg/kg	Zn mg/kg
2854104 28-11-11 B9/0.5	SOIL	<5	<0.2	52	56	<5	<0.05	100	76

Metals- ASLP (Acetate Buffer)	Analysis:	MS ASLP(Acet) Metals		
Sample Sampled Date Your Ref	Component: Units: Sample Type	ASLP-Lead mg/L		
2854105 28-11-11 B8/0.2	SOIL	0.13		

ASLP (Acetate Buffer)-PAH	Analysis:	ASLP(Acet.) PAH		
,	Component:	BAP		
Sample Sampled Date Your Ref	Units:	mg/L		
	Sample Type			
2854106 28-11-11 B509/0.2	SOIL	<0.001		

Acetate Leachate Preparation	Analysis:	ASLP(Acetate) Prep	ASLP(Acetate) Prep
Sample Sampled Date Your Ref	Component: Units: Sample Type	Leach Fluid pH pH units	pH (post rolling) pH units
2854105 28-11-11 B8/0.2	SOIL	4.9	4.8
2854106 28-11-11 B509/0.2	SOIL	4.9	4.8

 Page:
 Page 3 of 3

 Batch No:
 11-52461

 Report Number:
 270415

Client: Connolly Environmental

Client Program Ref: 11147b - Lilydale

Quality Control

ASLP (Acetate B	uffer)-PAH	ASLP(Acet.) PAH		
		BAP		
2855541 SPIKE	Sample Value	<0.001		
2855541 SPIKE	Expected Value	0.033		
2855541 SPIKE	% Recovery	87.4		
2853561 DUPLICATE	Sample Value	<0.001		
2853561 DUPLICATE	Duplicate Value	<0.001		
2853561 DUPLICATE	% RPD	0		
2857064 BLANK	Value	<0.001		

Metals- ASLP (Acetate Buffer)	MS ASLP(Acet) Metals
motato AGEI (AGGIATO BUITOI)	ASLP-Lead
2858162 BLANK Value	<0.01

Soil Metals		MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals
Oon Mictais		As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
2855933 BLANK	Value	<5	<0.2	<5	<5	<5	<0.05	<5	<5
2853603 SPIKE	Sample Value					10			
2853603 SPIKE	Expected Value					110			
2853603 SPIKE	% Recovery					93.2			

Chain of custody analysis request Tel. +61 3 9372 5688

Laboratory: SGS		Page _ of
Site: LILY DALE	Collected by: PC	Result required: 5 days
Job no: 111478	Collected on: 29/11/11	Contact name: JAMES
	1.7	enquiry@connolly.com.au

Relinguished by	Date	Time	Received by	Date	Time
Luke Sallivain	B112/11	9:30	TORES	6 1121 11	2,30
Lune salling	1 1	1 30	- When	1 1	6.1
	11			11	
	1 1				
Sample ID	1148-8 1148-8				
Soil or Water [s or w]	SS				
Lab ID					
5M	V				
PAH	V				
			1 1 1 1	u divintana aa ah	poified by
Reporting Limits:	Low repo	rting limits	required for grou	nuwaters as sp	ecilied by
TPH:			C15-C28, >C28 r, Cu, Zn, As, Hg		
SM:	Screen metal	t analyses TDU	MAH or volatiles on com	nosite samples but	on the first
Composites:	Please do not analyse TPH, MAH or volatiles on composite samples but on the first individual sample of the requested composite (unless otherwise indicated).				
PAH:	Total and ind				
Individual Phenols:	Phenols 8040 EPA screen as per 448 plus phenols & cresols, CHC, HVOL, pH and sulphate				
Connolly screen:	EPA screen a	as per 448 plus			t Format
			X PD	F X Resu	E F - was made

Chain of custody analysis request Tel. +61 3 9372 5688

						-	-1
Laboratory: SGS					Pag	e	of
Site: LILY DALE	Collecte	d by: PC		Result requ	uired:	5	days
Job no: 1/1475		d on: 28/	mlu	Contact na	me:JAM	ES	
50b no. 1114 153	1-311220		1	enquiry@c	onnolly.c	om.au	
- u 11 11	Dete	Time	Receive	d by	Date	Tim	е

Relinquished by	Date	Time	Recei	ved by		Date		Time
1	1 1	111111				1	1	
	1 1					1	1	
3	1 1					1	1	
3	1 1						-	1 1 1
Sample ID	11148-6609/0.2							
Soll or Water [s or w]	S							
Lab ID Analyte								
5M	V							
PAH	V		100	day	ed	CC		
Reporting Limits:	Low rep	oorting li	mits require 0-C14, C15-C28,	d for g	roundv	vaters	as s	pecified by
TPH: SM:	Screen me	tals Ph. NI.	Cd. Cr. Cu. Zn. /	As, Hg				
Composites:	Dingen do	not analyse	TPH, MAH or vo	latiles on	composi unless oti	te sam nerwise	lndicat	on the first ed).
PAH:	4	individual P	AH					
Individual Phenois:	Phenois 8	040		le	CHC IN	יו הע	and end	nhate
Connolly screen:	EPA scree	n as per 44	3 plus phenois &	crosols,	DDE	JL, ph	Des	It Format
Comments:				X	PDF	_	Conr	

AU.SampleReceipt.Melbourne (Melbourne)

From: Fode, Nicole (Melbourne)

Sent: Monday, 5 December 2011 3:22 PM

To: AU.SampleReceipt.Melbourne (Melbourne)

Subject: FW: Analysis

Attachments: 20111205150329974.pdf

For you @

Regards,

Nicole Fode

Environmental Services

Client Services

SGS Australia Pty Ltd 34 Norfolk Court Coburg Vic 3058 Australia

Phone: +61 3 9350 4800
Fax: +61 3 9350 4871
Email: Nicole.Fode@sgs.com
Web www.au.sgs.com

To provide your valuable feedback & help us to improve, please click here

From: James Allison [mailto:James@connolly.com.au]

Sent: Monday, 5 December 2011 3:07 PM

To: Fode, Nicole (Melbourne) Subject: FW: Analysis

Nicole,

Please find attached analysis for lilydale...

From: James Allison

Sent: Monday, 5 December 2011 3:05 PM

To: Durukan, Sue (Melbourne)

Subject: Analysis

Sue,

Please find attached analysis schedule for Lilydale, connolly job no. 11147b.

Regards,

James Allison | Environmental Scientist

Connolly Environmental • 142 Dynon Rd, West Melbourne, VIC 3003 Australia Phone +61 3 9372 5688 • Mobile 0423 884 133 • Fax +61 3 9372 5699 james@connolly.com.au | www.connolly.com.au

The information contained in this e-mail and any attachments is for the exclusive use of the addressee. If you have received this e-mail in error you are prohibited from disclosing, copying or using the information contained in it. If you are not the intended recipient please notify the sender immediately and delete this e-mail and any attachments. It is noted that legal privilege is not waived because you have read this e-mail. VIRUSES - You should scan this material and any attachment to ensure that they are free of computer viruses or any other defect. No warranty is given that the material is free from viruses or defects.

ANALYTICAL REPORT

CLIENT DETAILS -LABORATORY DETAILS

James Allison Aaron Stott Contact Manager

Connolly Environmental Laboratory SGS Victoria Environmental Client Address 142 Dynon Rd Address

34 Norfolk Ct

Coburg VIC 3058

Telephone 03 9372 5688 Telephone +61 3 9350 4800 Facsimile Facsimile +61 3 9350 4871

james@connolly.com.au Email au.environmental.melbourne@sgs.com Email

Project Lilydale 11147B SGS Reference ME200543 R0 (Not specified) Report Number 0000001543 Order Number

14 Dec 2011 Date Reported Samples 06 Dec 2011 Date Received

COMMENTS

The document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(2076/16881/16882).

PAH and Metals in soil were analysed by SGS Sydney, report no: SE90131

WEST MELBOURNE VIC 3003

SIGNATORIES

Aaron Stott Laboratory Manager

Member of the SGS Group

ANALYTICAL REPORT

ME200543 R0

	Sample Number Sample Matrix Sample Name		ME200543.001 Soil 11147B-B609/0.2
Parameter	Units	LOR	
Moisture Content Method: AN234			
% Moisture	%	0.5	4.0

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Method: AN040/AN320

Lead, Pb	mg/kg	1	15
Nickel, Ni	mg/kg	0.5	14
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.3	14
Copper, Cu	mg/kg	0.5	10
Zinc, Zn	mg/kg	0.5	28
Arsenic, As	mg/kg	3	<3

Mercury in Soil Method: AN312

Mercury	mg/kg	0.05	<0.05

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: AN420

Naphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b)fluoranthene	mg/kg	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1
Total PAH	mg/kg	0.8	<0.8

Surrogates

2-fluorobiphenyl (Surrogate)	%	-	92
d14-p-terphenyl (Surrogate)	%	-	94

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury in Soil Method: ME-(AU)-[ENV]AN312

ı	Parameter	QC	Units	LOR	MB	LCS
1		Reference				%Recovery
ı	Mercury	LB002926	mg/kg	0.05	<0.05	107%

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Naphthalene	LB002849	mg/kg	0.1	<0.1	0%	83%	
Acenaphthylene	LB002849	mg/kg	0.1	<0.1	0%	82%	
Acenaphthene	LB002849	mg/kg	0.1	<0.1	0%	83%	101%
Fluorene	LB002849	mg/kg	0.1	<0.1	0%	83%	
Phenanthrene	LB002849	mg/kg	0.1	<0.1	0%	81%	
Anthracene	LB002849	mg/kg	0.1	<0.1	0%	80%	
Fluoranthene	LB002849	mg/kg	0.1	<0.1	0%	82%	
Pyrene	LB002849	mg/kg	0.1	<0.1	0%	85%	98%
Benzo(a)anthracene	LB002849	mg/kg	0.1	<0.1	0%	81%	
Chrysene	LB002849	mg/kg	0.1	<0.1	0%	79%	
Benzo(b)fluoranthene	LB002849	mg/kg	0.1	<0.1	0%	74%	
Benzo(k)fluoranthene	LB002849	mg/kg	0.1	<0.1	0%	77%	
Benzo(a)pyrene	LB002849	mg/kg	0.1	<0.1	0%	75%	
Indeno(1,2,3-cd)pyrene	LB002849	mg/kg	0.1	<0.1	0%	74%	
Dibenzo(a&h)anthracene	LB002849	mg/kg	0.1	<0.1	0%	80%	
Benzo(ghi)perylene	LB002849	mg/kg	0.1	<0.1	0%	78%	
Total PAH	LB002849	mg/kg	0.8	<0.8	0%		

Surrogates

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
ı		Reference					%Recovery	%Recovery
ı	2-fluorobiphenyl (Surrogate)	LB002849	%	-	90%	4%	90%	94%
1	d14-p-terphenyl (Surrogate)	LB002849	%	-	94%	4%	90%	108%

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest Method: ME-(AU)-[ENV]AN040/AN320

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Lead, Pb	LB002925	mg/kg	1	<1	103%
Nickel, Ni	LB002925	mg/kg	0.5	<0.5	101%
Cadmium, Cd	LB002925	mg/kg	0.3	<0.3	103%
Chromium, Cr	LB002925	mg/kg	0.3	<0.3	100%
Copper, Cu	LB002925	mg/kg	0.5	<0.5	103%
Zinc, Zn	LB002925	mg/kg	0.5	<0.5	105%
Arsenic, As	LB002925	mg/kg	3	<3	103%

METHOD SUMMARY

METHOD

METHODOLOGY SUMMARY

AN088

Orbital rolling for Organic pollutants are extracted from soil/sediment by transferring an appropriate mass of sample to a clear soil jar and extracting with 1:1 Dichloromethane/Acetone. Orbital Rolling method is intended for the extraction of semi-volatile organic compounds from soil/sediment samples, and is based somewhat on USEPA method 3570 (Micro Organic extraction and sample preparation). Method 3700.

AN234

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN312

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA

3112/3500

AN420

(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on

USEPA 3500C and 8270D).

Insufficient sample for analysis. IS LNR Sample listed, but not received.

This analysis is not covered by the scope of accreditation.

Performed by outside laboratory.

LOR Limit of Reporting

Raised or Lowered Limit of Reporting **1**

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QFH QC result is above the upper tolerance QFL QC result is below the lower tolerance The sample was not analysed for this analyte

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf

NVL

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Not Validated

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS

James Allison Aaron Stott Contact Manager

Connolly Environmental SGS Victoria Environmental Laboratory Client Address 142 Dynon Rd 34 Norfolk Ct

Address WEST MELBOURNE VIC 3003 Coburg VIC 3058

03 9372 5688 +61 3 9350 4800 Telephone Telephone

+61 3 9350 4871 Facsimile Facsimile

james@connolly.com.au au.environmental.melbourne@sgs.com Email Email

Lilydale 11147B ME200543 R0 SGS Reference Project 0000001544 (Not specified) Order Number Report Number 14 Dec 2011 Samples Date Reported

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met.

SAMPLE SUMMARY

Sample counts by matrix 1 Soil Type of documentation received COC 6/12/2011 Date documentation received Samples received in good order Yes Samples received without headspace Sample temperature upon receipt 8°C N/A Sample container provider SGS Turnaround time requested Standard Samples received in correct containers Yes Sufficient sample for analysis Yes Sample cooling method Ice Bricks Samples clearly labelled Yes Number of eskies/boxes received Complete documentation received Yes

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

34 Norfolk Court

Coburg VIC 3058

Australia

t +61 3 9350 4800

f +61 3 9350 4871

www.au.sqs.com

HOLDING TIME SUMMARY

ME200543 R0

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1: 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil	Method: ME-(AU)-IENVIAN312

11147B-B609/0.2	ME200543.001	LB002926	-	06 Dec 2011	-	14 Dec 2011	-	14 Dec 2011
Moisture Content							Metho	d: MF-(AU)-IFNVIAN234

Comple No. Complet Complet Descript Entration Date Completed Description

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
11147B-B609/0.2	ME200543.001	LB002927	-	06 Dec 2011	-	14 Dec 2011	-	14 Dec 2011

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
11147B-B609/0.2	ME200543.001	LB002849	-	06 Dec 2011	-	06 Dec 2011	-	08 Dec 2011

Total Recoverable Metals in Soll by ICPOES from EPA 200.8 Digest

Method: ME-(AU)-[ENV]AN040/AN320

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
11147B-B609/0.2	ME200543.001	LB002925	-	06 Dec 2011	-	14 Dec 2011	-	14 Dec 2011

SURROGATES

ME200543 R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	11147B-B609/0.2	ME200543.001	%	60 - 130%	92
d14-p-terphenyl (Surrogate)	11147B-B609/0.2	ME200543.001	%	60 - 130%	94

METHOD BLANKS

ME200543 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result
LB002926.001	Mercury	mg/kg	0.05	<0.05

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

· · · · · · · · · · · · · · · · · · ·				
Sample Number	Parameter	Units	LOR	Result
B002849.001	Naphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
	Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1
	Benzo(ghi)perylene	mg/kg	0.1	<0.1
	Total PAH	mg/kg	0.8	<0.8
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	90
	d14-p-terphenyl (Surrogate)	%	-	94

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result
LB002925.001	Lead, Pb	mg/kg	1	<1
	Nickel, Ni	mg/kg	0.5	<0.5
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Zinc, Zn	mg/kg	0.5	<0.5
	Arsenic, As	mg/kg	3	<3

DUPLICATES

ME200543 R0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
ME200159A.007	LB002849.004	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
		Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
		Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
		Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
		Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
		Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
		Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
		Benzo(b)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
		Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
		Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
		Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
		Total PAH	mg/kg	0.8	<0.8	<0.8	200	0
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	95.0	99.0	30	4
		d14-p-terphenyl (Surrogate)	%	-	105.0	101.0	30	4

LABORATORY CONTROL SAMPLES

ME200543 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB002926.002	Mercury	mg/kg	0.05	0.21	0.2	70 - 130	107

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

(•						-,
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB002849.002	Naphthalene	mg/kg	0.1	4.2	5	60 - 140	83
	Acenaphthylene	mg/kg	0.1	4.1	5	60 - 140	82
	Acenaphthene	mg/kg	0.1	4.2	5	60 - 140	83
	Fluorene	mg/kg	0.1	4.1	5	60 - 140	83
	Phenanthrene	mg/kg	0.1	4.0	5	60 - 140	81
	Anthracene	mg/kg	0.1	4.0	5	60 - 140	80
	Fluoranthene	mg/kg	0.1	4.1	5	60 - 140	82
	Pyrene	mg/kg	0.1	4.3	5	60 - 140	85
	Benzo(a)anthracene	mg/kg	0.1	4.1	5	60 - 140	81
	Chrysene	mg/kg	0.1	4.0	5	60 - 140	79
	Benzo(b)fluoranthene	mg/kg	0.1	3.7	5	60 - 140	74
	Benzo(k)fluoranthene	mg/kg	0.1	3.9	5	60 - 140	77
	Benzo(a)pyrene	mg/kg	0.1	3.7	5	60 - 140	75
	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	3.7	5	60 - 140	74
	Dibenzo(a&h)anthracene	mg/kg	0.1	4.0	5	60 - 140	80
	Benzo(ghi)perylene	mg/kg	0.1	3.9	5	60 - 140	78
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	90.0	100	60 - 140	90
	d14-p-terphenyl (Surrogate)	%	-	90.0	100	60 - 140	90

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB002925.002	Lead, Pb	mg/kg	1	52	50	80 - 120	103
	Nickel, Ni	mg/kg	0.5	51	50	80 - 120	101
	Cadmium, Cd	mg/kg	0.3	52	50	80 - 120	103
	Chromium, Cr	mg/kg	0.3	50	50	80 - 120	100
	Copper, Cu	mg/kg	0.5	52	50	80 - 120	103
	Zinc, Zn	mg/kg	0.5	53	50	80 - 120	105
	Arsenic, As	mg/kg	3	52	50	80 - 120	103

MATRIX SPIKES

ME200543 R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

								7 km	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
ME200159A.00	LB002849.005		Acenaphthene	mg/kg	0.1	5.0	<0.1	5	101
7			Pyrene	mg/kg	0.1	4.9	<0.1	5	98
		Surrogates	2-fluorobiphenyl (Surrogate)	%	-	94.0	95.0	100	94
			d14-p-terphenyl (Surrogate)	%	-	108.0	105.0	100	108

MATRIX SPIKE DUPLICATES

ME200543 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: $MAD = 100 \times SDL / Mean + LR$

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

FOOTNOTES

ME200543 R0

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf

- * Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.

IS Insufficient sample for analysis. LNR Sample listed, but not received.

LOR Limit of reporting.

QFH QC result is above the upper tolerance.
QFL QC result is below the lower tolerance.

- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- ® Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

Appendix E: Current Title Information

Victoria

Copyright State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. The State of Victoria accepts no responsibility for any subsequent release, publication or reproduction of the

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 11222 FOLIO 059

Security no : 124059745048J Produced 04/04/2016 10:37 am

LAND DESCRIPTION

Lot 1 on Plan of Subdivision 546467D. PARENT TITLE Volume 11175 Folio 939 Created by instrument AH300584Q 17/06/2010

REGISTERED PROPRIETOR

Estate Fee Simple
Sole Proprietor
YARRA RANGES SHIRE COUNCIL of 15 ANDERSON STREET LILYDALE VIC 3140
AH300619X 17/06/2010

ENCUMBRANCES, CAVEATS AND NOTICES

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

SEE PS546467D FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL

DOCUMENT END

Delivered by LANDATA®. Land Victoria timestamp 04/04/2016 10:42 Page 1 of 2 Plan Number STAGE NO. LR use only PLAN OF SUBDIVISION **EDITION** PS546467D Under Section 35 of the Subdivision Act 1988 1 Location of Land Council Certification and Endorsement Parish: YERING Ref: 8912 Council Name: YARRA RANGES SHIRE Township: Section: 29 A. This is a plan under section 35 of the Subdivision Act 1988 which does not Crown Allotment: 10 (PART) create any additional lots. Crown Portion: ----B. This plan is exempt from Part 3 of the Subdivision Act 1988. C. This-is a plan under section 35 of the Subdivision Act 1988 which-creates (an) Title Reference: Vol. 11220 Fol. 580 (Bk. 545 Mem. 317) D. It is certified under section 6 of the Subdivision Act 1988. Vol. 11175 Fol. 939 E. It is certified under section 11(7) of the Subdivision Act 1988. F. Date of original certification under section 6. 18/06/2007 Last Plan Reference: TP946394L (Lot 1) G. This is a statement of campliance under section 21 of the Subdivision Act 1988. TP944762T (Lot 1) Council Delegate Council Seal Postal Address: 15 ANDERSON STREET (at time of subdivision) LILYDALE 3140 Date MGA94 Co-ordinates Ε 354 900 (of approx. centre of plan) Re-certified under section 11(7) of the Subdivision Act 1988. 5 819 600 N ZONE: 55 Council Delegate Vesting of Roads and / or Reserves Date 29/06/2009 Roads and reserves vest in the council/body/person named when the appropiate vesting date is recorded or transfer registered. Only roads and reserves marked thus (%) vest upon registration of this plan. **Notations** Identifier Council/Body/Person Staging This is not a staged subdivision. Planning Permit No: NOT APPLICABLE R1 & R2 ROADS CORPORATION Depth Limitation DOES NOT APPLY Land to be acquired by compulsory process : NIL Land to be acquired by agreement R1 & R2 The land being subdivided is enclosed within thick continuous Underlined dimensions shown thus 123.45 are not the result of this survey. Area of Lot 1 is deduced from LITHO and PS332407R. Survey This plan is based on survey and is compiled from Roads Corporation SP21164B For abstract of field records see PS546466F. All the land is to be acquired free from all This plan has been connected to permanent encumbrances other than any easements marks no(s) 64, 66 & 67. specified on this plan. In proclaimed Survey Area no. PSA 13. Easement Information E - Encumbering Easement or Condition in Crown Grant in the Nature of an Easement A - Appurtenant Easement R - Encumbering Easement (Road) LR use only Easements marked (-) are existing easements. Easements marked (+) are created upon registration of this plan. Easements marked (*) are created when the appropriate vesting date is recorded or transfer registered. Statement of Compliance/ **Exemption Statement** Easements marked (#) are removed when the appropiate vesting date is recorded or transfer registered. Subject Width Received Symbol Purpose Origin Land Benefited/In Favour Of Land (Metres) R1 PUBLIC HIGHWAY GOVERNMENT GAZETTE \$352 SEE DIAGRAM THE PUBLIC Date 15/06/2010 20/12/2007 P.3 R2 PUBLIC HIGHWAY SEE DIAGRAM GOVERNMENT GAZETTE THE PUBLIC LR use only 12/3/1941 P.1248 PLAN REGISTERED Time 11:40 a.m. Date 20/08/2010 B. Greenland

ROADS CORPORATION Land Information and Survey 60 Denmark Street,

LI&S/subactplans/24507-lis--ps-01.dgn

Kew. 3101.

Drawing file :

MARK BADEN RENNICK LICENSED SURVEYOR
(PRINT)

Job Book Number 24507

02

DATE 25, 5,09

DATE 29,06,2009 COUNCIL DELEGATE SIGNATURE

Assistant Registrar of Titles Sheet 1 of 2 Sheets

Original sheet size A3

Appendix F: Historical Certificates of Title

Copyright State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. The State of Victoria accepts no responsibility for any subsequent release, publication or reproduction of the

HISTORICAL SEARCH STATEMENT

Land Victoria

Page 1 of 2

Produced 04/04/2016 11:07 AM

Volume 11175 Folio 939

Folio Creation: Created as a computer folio

RECORD OF ALTS DEALINGS

Date Lodged for Date Recorded Dealing Imaged Dealing Type and

Registration on Register Details

RECORD OF VOTS DEALINGS

Date Lodged for Date Recorded Dealing Imaged

Registration on Register

15/06/2010 20/08/2010 PS546467D Y

PLAN OF SUBDIVISION SECTION 35 SUBDIVISION ACT

PS546467D affect(s) land herein

17/06/2010 20/08/2010 AH300584Q Y

Cancelled by AH300584Q

STATEMENT END

VOTS Snapshot

VOLUME 11175 FOLIO 939

124032044725F

Produced 07/12/2009 01:27 pm

LAND DESCRIPTION

Lot 1 on Title Plan 944762T. Created by Application No. 118666J 30/11/2009

REGISTERED PROPRIETOR

Estate Fee Simple Sole Proprietor

YARRA RANGES SHIRE COUNCIL of ANDERSON STREET LILYDALE VIC 3140 Application No. 118666J 30/11/2009

ENCUMBRANCES, CAVEATS AND NOTICES

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section

Victoria
Copyright State

Copyright State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. The State of Victoria accepts no responsibility for any subsequent release, publication or reproduction of the information.

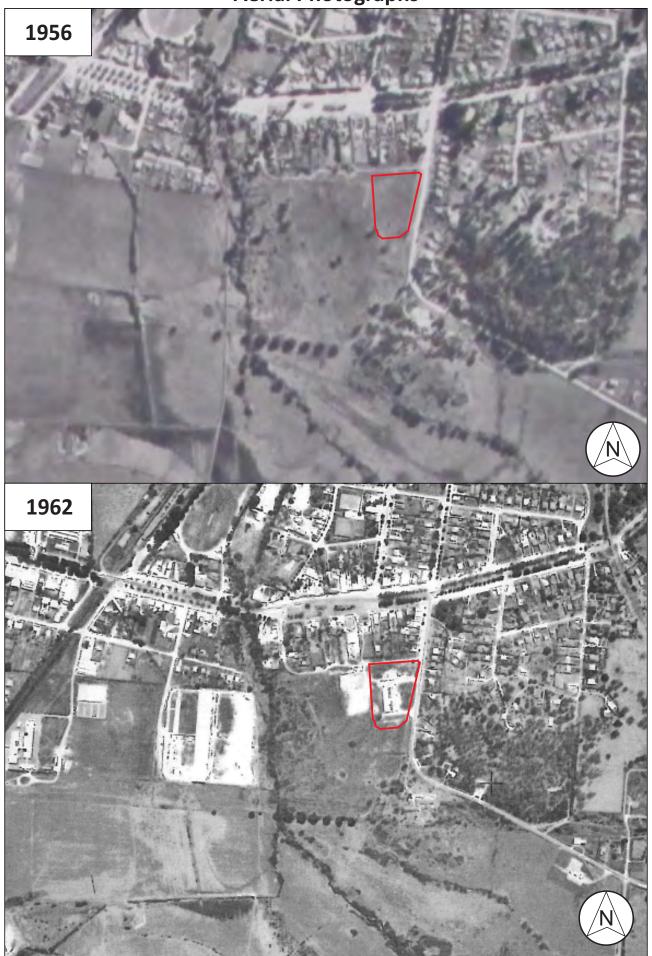
HISTORICAL SEARCH STATEMENT

Land Victoria

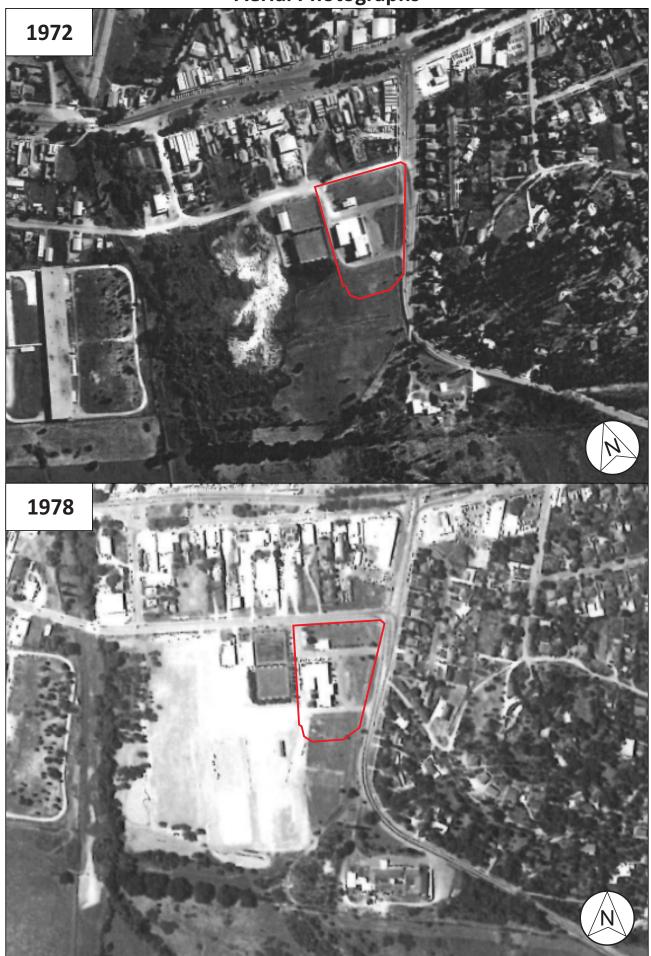
Page 2 of 2

24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

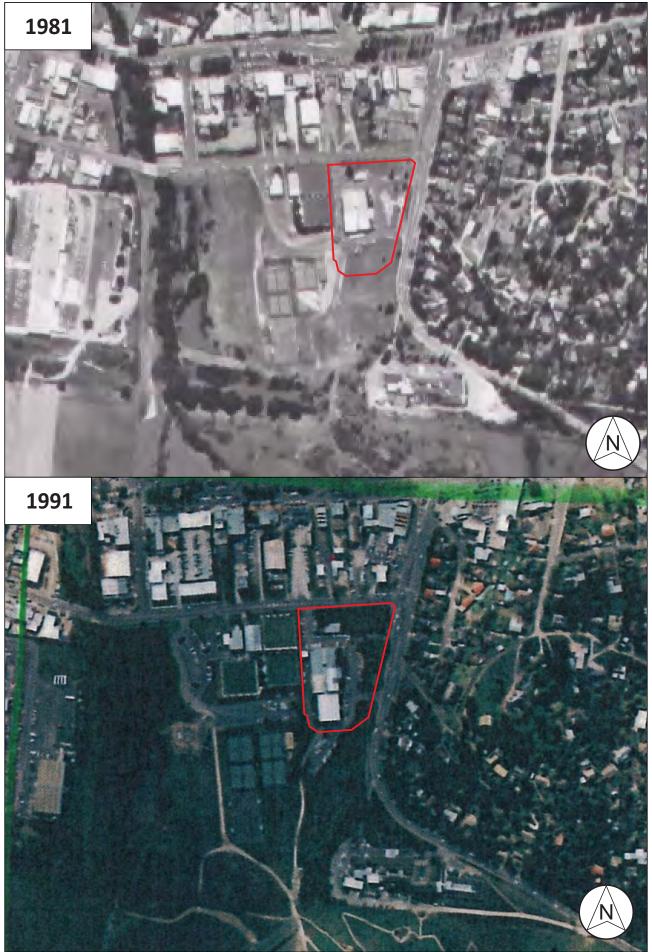
DIAGRAM LOCATION


SEE TP944762T FOR FURTHER DETAILS AND BOUNDARIES

	Т	ITLE P	LAN		EDITION	1	TP944762T
LOCATION OF LAND PARISH: YERING TOWNSHIP: SECTION: 29 CROWN ALLOTMENT: 10 (PART) CROWN PORTION: LAST PLAN REFERENCE: DERIVED FROM: DEPTH LIMITATION: EASEMENT INFORMATION E - ENCUMBERING EASEMENT, R - ENCUMBERING EASEMENT (ROAD). A-					DDI IDTENANT EACEMENT	NOT	ATIONS
Easement		/ Authority	Width	Origin	Land benefited /	n favour of	THIS PLAN HAS BEEN PREPARED BY LAND VICTORIA FOR TITLE DIAGRAM PURPOSES
Reference	i dipose	Additional	(Metres)	Ongili	Land benefited / I	Triavour or	Checked by: PT Date: 7/12/09 Assistant Registrar of Titles
	D 24-		HAF	RDY 85°3(346		Γ	
	DRAIN 10 A			LOT 6.922 (By [ANDERSON STREET
		10B		299°0525°	15.49 276°04' ELBA AVE		
	S ARE IN RES	SCALE		ALING / FILE No: AP			DEALING CODE: 15 SHEET 1 OF 1



Appendix G: Aerial Photographs




19476: Detailed Site Investigation Y0003: Yarra Ranges Council 15 Anderson Street, Lilydale, Victoria

19476: Detailed Site Investigation Y0003: Yarra Ranges Council 15 Anderson Street, Lilydale, Victoria

Appendix H: Royal Historical Society of Victoria

ROYAL HISTORICAL SOCIETY OF VICTORIA INC.

239 A'Beckett Street, Melbourne 3000

Date: 23 March, 2016

Attention: Madeleine Parris

Company: Prensa Pty.Ltd.

From: Gerardine Horgan, Administrative Officer

SITE SEARCH: 15 Anderson Street, Lilydale 3140

The site under review is located south of Maroondah Highway, on the west side of Anderson St., south of Hardy Street.

The area of Lilydale was recognised as a district in 1956 and a Shire in 1872.

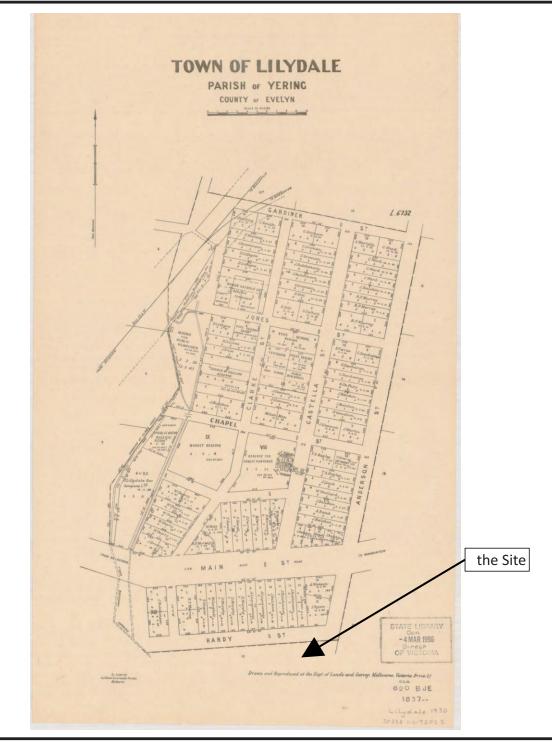
A search of the Victorian Municipal Directory of 1885 shows that it was then known as Lillydale, and was mainly a grazing and vine growing area.

The Sands and MacDougall Directories list Lilydale as a country town, and provide only alphabetical lists of residents. In the 1933 edition of S. & M. there is a Shire Hall, but the location is not mentioned.

A search of the Melways Directories showed that from 1966 to 2016, the site has been used by the Lilydale Shire Offices.

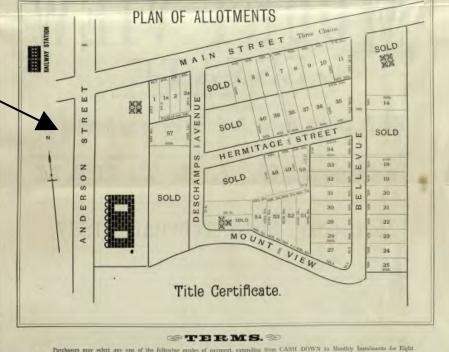
Research by Belinda Williams.

Tel: (03) 9326 9288 Find out more about us on our website www.historyvictoria.org.au


Email: office@biotompreconfloARAE36 520 675 471

Appendix I: State Library of Victoria Search

MMBW 1930 North of the Site 15 Anderson Street, Lilydale Detailed Site Investigation Job No. 19476 Client No. Y0003



LILYDALE

Saturday, 26th Feb., 1887

SLV 1887

Mount View Estate - East of the Site 15 Anderson Street, Lilydale Detailed Site Investigation Job No. 19476 Client No. Y0003

the Site

Purchasers may select any one of the following modes of payment, extending from CASH DOWN to Monthly Instalments for Eight Years. The long terms offered will give everybody an opportunity of oscaring an Alloument in this magnificent piece of land.

- 1. £10 in Cash, for each Allotment, and the balance by Bills at 3, 6, 9 and 12 Months, with Interest at 6 per cent. per annum
- 2. £10 in Cash, for each Allotment, and for each £100 balance of Purchase Money by Monthly Instalments, extending over 1 to 8
 Years, under the following Table:-

Term of	Monthly	Term of	Morelly	Term of	Monthly	Teno of	Manually
Years.	Payments.	Years.	Payments	Tears.	Payments	Years.	Payments
One · · Two · ·	8 14 0 4 10 6	Three Four	2 8 10	Five Six	2 0 7	Seven Eight	

3. The Whole in Cash

THE FULLEST PARTICULARS MAY BE OBTAINED FROM

Messrs. C. J. & T. HAM, Auctioneers, Swanston Street, Melbourne; or Mr. E. KIDGELL, Auctioneer and Estate Agent, Lilydale.

REDUCED RAILWAY TICKETS AT 28. 60. RETURN, CAN BE OBTAINED FROM THE AUGTIONEERS.

Special Train leaves Princes Bridge Station at 1.10 p.m., stopping at Richmond, Hawthorn, Camberwell and Box Hill.

**System. Returns. Company.

Appendix J: Borelogs

Client: Yarra Ranges Council Date: 24/03/2016 Depth of Hole: 1.10 m Job Number: 19476 Rig/Machine: Drill Rig Drawn By: MBP Site Location: 15 Anderson Street, Lilydale **Excavation Method: SSA** Approved By: CXB Job Type: DSI Lilydale PID Calibration: 98.9 ppm Isobutylene Comment: Graphic Log PID $\widehat{\mathbb{E}}$ Subsurface Profile Sample Method Depth (BITUMEN PAVEMENT (0.00 - 0.15 m). 0.1 CRUSHED ROCK (0.15 - 0.20 m). 0.2 FILL: Gravelly SILT (0.20 - 0.45 m). Light brown/orange, loose, dry to slightly moist, fine to coarse BH10_0.3 0.5 0.3 gravels, compacted silt. 0.4 FILL: SILT (0.45 - 0.80 m). 0.5 BH10_0.5 0.3 Light brown, medium dense, dry to slightly moist, decomposed organic matter. 0.6 0.7 0.8 FILL: CLAY (0.80 - 1.10 m). PRENSALIB 1.00.GLB Log PRENSA BH-TP-HA LOG 19476 DSI LILYDALE.GPJ <-DrawingFile>> 21/04/2016 14:48 8:30.002 Datgel Lab and In Situ Tool Brown with orange mottles, stiff, dry to slightly moist, low to 0.9 medium plasticity. 1.0 BH10_1.0 0.4 End of borehole at 1.1 m on rock.

Sheet: 1 of 1

Client: Yarra Ranges Council Date: 23/03/2016 Depth of Hole: 2.00 m Job Number: 19476 Drawn By: MBP Rig/Machine: Drill Rig Site Location: 15 Anderson Street, Lilydale **Excavation Method: SSA** Approved By: CXB Job Type: DSI Lilydale PID Calibration: 98.9 ppm Isobutylene

Comment:
Quality control QC1 and QC2 collected at 0.2 m depth.

Depth (m)	Method	Graphic Log	Subsurface Profile	Sample	PID
0.1			FILL: Gravelly SILT (0.00 - 0.25 m). Brown, loose, dry, angular gravels, organic matter, minor clay inclusions.		
0.2				BH2_0.2	0.3
0.3			FILL: Clayey SILT (0.25 - 1.20 m). Brown/orange, stiff, loose, dry, medium plasticity, decomposed organic matter.		
0.5				BH2_0.5	0.3
0.6					
0.7					
0.8					
0.9	je				
1.0	Solid auger			BH2_1.0	0.2
1.1					
1.2			NATURAL: CLAY (1.20 - 2.00 m). Brown/orange/grey, very stiff, dry to slightly moist, medium		
1.3			plasticity, minor organic matter.		
1.4				BH2_1.5	0.1
1.6				טווב_1.3	0.1
1.7					
1.8					
1.9					
-2.0				BH2_2.0	0

Client: Yarra Ranges Council

Depth of Hole: 1.50 m

Job Number: 19476 Rig/Machine: Drill Rig Drawn By: MBP Site Location: 15 Anderson Street, Lilydale **Excavation Method: SSA** Approved By: CXB Job Type: DSI Lilydale PID Calibration: 98.9 ppm Isobutylene **Comment:**Refusal encountered on rock fragment at approximately 0.35 m bgl. Borehole relocated approximately 0.4 m east. Graphic Log Ξ Subsurface Profile Sample PID Method Depth (BITUMEN PAVEMENT (0.00 - 0.15 m). 0.1 FILL: Clayey GRAVEL (0.15 - 0.40 m). 0.2 Light brown to dark grey, very loose, slightly moist, fine to medium grained sand, medium to coarse angular gravels, (road base). BH3_0.3 0 0.3 0.4 NATURAL: Clayey SAND (0.40 - 0.70 m). Light brown, firm to stiff, loose, slightly moist, low plasticity, 0.5 fine to medium grained sand. BH3_0.5 0 0.6 0.7 NATURAL: CLAY (0.70 - 1.20 m). Light brown with orange mottles, very stiff, slightly moist, zero 0.8 plasticity, trace organic rootlets, black organic matter. BH3_0.8 0 PRENSA LIB 1.00.GLB Log PRENSA BH-TP-HA LOG 19476 DSI LILYDALE.GPJ <<DrawingFile>> 21/04/2016 14:48 8:30.002 Datgel Lab and In Situ Tool 0.9 1.0 1.1 1.2 NATURAL: Silty SAND/ROCK (1.20 - 1.50 m). Light brown, loose, slightly moist, silty sand. 1.3 1.4 BH3_1.4 0 End of borehole at 1.5 m on rock.

Date: 22/03/2016

Sheet: 1 of 1

PRENSA LIB 1.00.GLB Log PRENSA BH-TP-HA LOG 19476 DSI LILYDALE.GPJ <<DrawingFile>> 21/04/2016 14:48 8:30.002 Datgel Lab and In Situ Tool

Client: Yarra Ranges Council Date: 23/03/2016 Depth of Hole: 1.25 m Job Number: 19476 Rig/Machine: Drill Rig Drawn By: MBP Site Location: 15 Anderson Street, Lilydale **Excavation Method: SSA** Approved By: CXB Job Type: DSI Lilydale PID Calibration: 98.9 ppm Isobutylene Comment: Field Blank FB1 collected during sampling. Graphic Log PID $\widehat{\Xi}$ Subsurface Profile Sample Method Depth (BITUMENT PAVEMENT (0.00 - 0.15 m). 0.1 FILL: Silty Sandy GRAVEL (0.15 - 0.30 m). 0.2 Brown, loose, slightly moist, fine grained sand, angular gravels, bitumen fragments, crushed rock, concrete. 0.3 FILL: Sandy CLAY (0.30 - 0.50 m). BH4_0.33 0.7 Grey/brown, soft, moist, medium plasticity, fine grained sand, 0.4 becoming natural soil. 0.5 NATURAL: CLAY (0.50 - 1.25 m). BH4_0.55 0.4 Brown, firm, slightly mosit to moist, medium plasticity, minor 0.6 fine to medium gravels. 0.7 0.8 0.9 1.0 Becoming brown/grey, stiff, less gravelly. 0.3 1.1 BH4_1.1 Becoming grey/orange/brown and slightly silty. 1.2 End of borehole at 1.3 m on rock.

Sheet: 1 of 1

Client: Yarra Ranges Council

Depth of Hole: 2.00 m

Job Number: 19476 Rig/Machine: Drill Rig Drawn By: MBP Site Location: 15 Anderson Street, Lilydale **Excavation Method: SSA** Approved By: CXB Job Type: DSI Lilydale PID Calibration: 98.9 ppm Isobutylene **Comment:**Insufficient sample collected at 2.0 m bgl to obtain a PID reading. Graphic Log PID $\widehat{\mathbb{E}}$ Subsurface Profile Sample Method Depth (BITUMEN PAVEMENT (0.00 - 0.15 m). 0.1 FILL: Clayey SILT (0.15 - 0.40 m). 0.2 Red/brown, soft, medium dense, slightly mosit, low plasticity, angular gravels, minor crushed rock. 0.3 BH5_0.35 0.3 0.4 NATURAL: CLAY (0.40 - 2.00 m). Brown/orange, firm to stiff, slightly moist, medium to low 0.5 plasticity. BH5_0.5 0.3 0.6 0.7 0.8 PRENSA LIB 1.00.GLB Log PRENSA BH-TP-HA LOG 19476 DSI LILYDALE.GPJ <<DrawingFile>> 21/04/2016 14:48 8:30.002 Datgel Lab and In Situ Tool 0.9 1.0 BH5_1.0 0.4 Becoming stiff, decomposed organic matter. 1.1 1.2 1.3 1.4 BH5 1.5 1.5 Becoming light brown/orange/red/grey. 1.6 1.7 1.9 BH5 2.0 End of borehole at 2.0 m in natural.

Date: 24/03/2016

Sheet: 1 of 1

Client: Yarra Ranges Council

Depth of Hole: 1.50 m

Job Number: 19476 Rig/Machine: Drill Rig Drawn By: MBP Site Location: 15 Anderson Street, Lilydale Excavation Method: Hand Auger Approved By: CXB Job Type: DSI Lilydale PID Calibration: 98.9 ppm Isobutylene Comment: Graphic Log PID $\widehat{\Xi}$ Subsurface Profile Sample Method Depth (FILL: Gravelly SILT (0.00 - 0.10 m). Brown, very loose, dry to slightly moist, trace fine to medium 0.1 grained sand, organic matter (roots, tan bark). FILL: Gravelly SILT (0.10 - 0.95 m). Brown, very loose, dry to slightly moist, less organic matter, 0.2 BH6 0.2 minor clay inclusions, minor brick fragments. 0.3 0.4 0.5 BH6_0.5 0 0.6 0.7 0.8 Becoming more compact silt and less gravelly. PRENSA LIB 1.00.GLB Log PRENSA BH-TP-HA LOG 19476 DSI LILYDALE.GPJ <<DrawingFile>> 21/04/2016 14:48 8:30.002 Datgel Lab and In Situ Tool 0.9 Decomposed organic matter. FILL: SILT (0.95 - 1.25 m). 1.0 BH6_1.0 0.2 Light brown, medium dense, dry to slightly moist, minor roots. 1.1 1.2 NATURAL: CLAY (1.25 - 1.50 m). 1.3 BH6_1.3 0 Brown/orange, stiff, slightly moist, medium plasticity. 1.4 BH6_1.5 0 End of borehole at 1.5 m in natural.

Date: 22/03/2016

Sheet: 1 of 1

PRENSALIB 1.00.GLB Log PRENSABH-TP-HALOG 19476 DSI LILYDALE.GPJ <<DrawingFile>> 21/04/2016 14:48 8:30.002 Datgel Lab and In Situ Tool

Client: Yarra Ranges Council

Depth of Hole: 1.00 m

Job Number: 19476 Rig/Machine: Drill Rig Drawn By: MBP Approved By: CXB Site Location: 15 Anderson Street, Lilydale Excavation Method: Hand Auger Job Type: DSI Lilydale PID Calibration: 98.9 ppm Isobutylene Comment:
Rinsate R1 collected off hand auger. Graphic Log PID $\widehat{\mathbb{E}}$ Subsurface Profile Sample Method Depth (FILL: Gravelly SILT (0.00 - 0.60 m). Brown, loose, dry, fine to medium gravels, extensive organic 0.1 matter (roots, tanbark). 0.2 BH7 0.2 0.3 0.4 0.5 BH7_0.5 0.1 0.6 FILL: SILT (0.60 - 1.00 m). Brown, loose, dry, minor clay inclusions, organic matter 0.7 (roots). 0.8 0.9 BH7 1.0 End of borehole at 1.0 m at target depth.

Date: 23/03/2016

Appendix K: EIL Calculations

Inputs
Select contaminant from list below
Cu
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
29
Enter soil pH (calcium chloride method) (values from 1 to 14)
7.6
Enter organic carbon content (%OC) (values from 0 to 50%)
1
Below needed to calculate fresh and aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method)
(values from 0 to 50%) to obtain estimate
of background concentration
- I
or for aged ABCs only
Enter State (or closest State)
VIC
Enter traffic volume (high or low)
` • '

Outputs				
Land use	Cu soil-specific EILs			
	(mg contaminant	/kg dry soil)		
	Fresh	Aged		
National parks and areas of high conservation value	75	80		
Urban residential and open public spaces	130	230		
Commercial and industrial	190	330		

Inputs
Select contaminant from list below
Cu
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
17
Enter soil pH (calcium chloride method) (values from 1 to 14)
7.5
Enter organic carbon content (%OC) (values from 0 to 50%)
1
Below needed to calculate fresh and aged
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value
ABCs Measured background concentration
ABCs Measured background concentration (mg/kg). Leave blank if no measured value
Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only
Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate
Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate
ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7
ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only
ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State)

Outputs				
Land use	Cu soil-specific EILs			
	(mg contaminant	/kg dry soil)		
	Fresh	Aged		
National parks and areas of high conservation value	70	80		
Urban residential and open public spaces	130	210		
Commercial and industrial	180	310		

Inputs
Select contaminant from list below
Ni
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100
cmolc/kg dwt)
chlolorky uwtj
29
Below needed to calculate fresh and aged
ABCs
Measured background concentration
Measured background concentration (mg/kg). Leave blank if no measured value
(mg/kg). Leave blank if no measured value
(mg/kg). Leave blank if no measured value or for fresh ABCs only
(mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method)
or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate
or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7
or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration
or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7
or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State)
or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State) VIC
or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State)
or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State) VIC

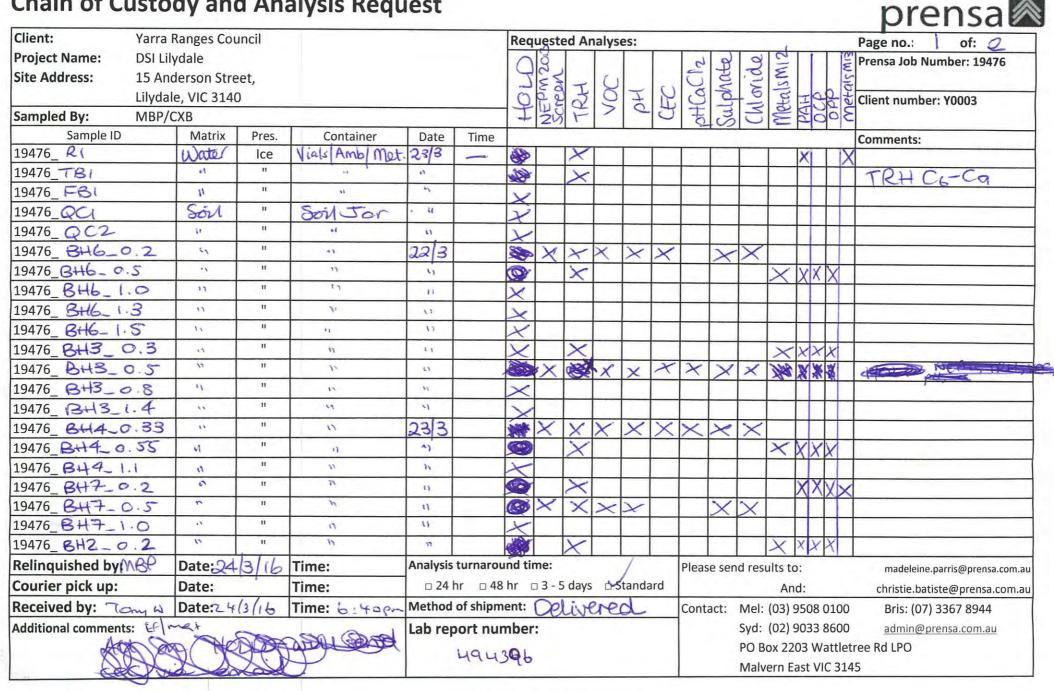
Outputs				
		pecific EILs		
	(mg contaminant	/kg dry soil)		
	Fresh	Aged		
National parks and areas of high conservation value	40	70		
Urban residential and open public spaces	130	350		
Commercial and industrial	240	600		

Inputs
Select contaminant from list below
Ni
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
17
Below needed to calculate fresh and aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7
or for aged ABCs only
Enter State (or closest State)
VIC
Enter traffic volume (high or low)
high

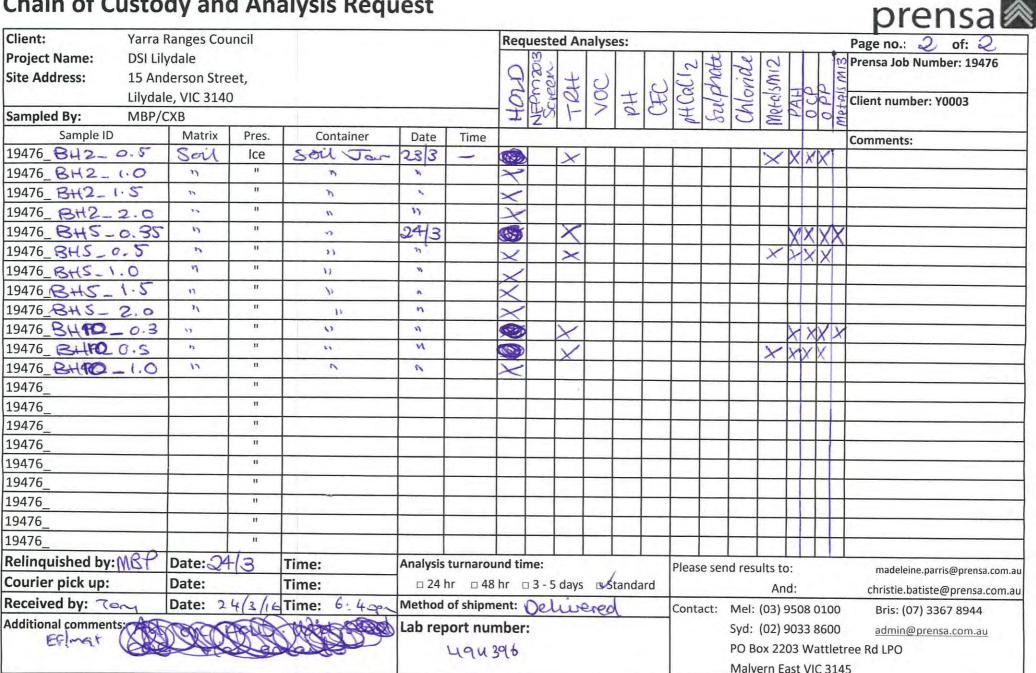
Outputs				
Land use Ni soil-specific EIL (mg contaminant/kg dry soil				
	Fresh	Aged		
National parks and areas of high conservation value	35	50		
Urban residential and open public spaces	100	250		
Commercial and industrial	180	420		

Inputs
Select contaminant from list below
Zn
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)
29
Enter soil pH (calcium chloride method) (values from 1 to 14)
7.6
Below needed to calculate fresh and aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
or for fresh ABCs only
Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7
or for aged ABCs only
Enter State (or closest State)
VIC
Enter traffic volume (high or low)
high

Outputs											
Land use	Zn soil-specific ElLs										
	(mg contaminant	/kg dry soil)									
	Fresh	Aged									
National parks and areas of high conservation value	120	260									
Urban residential and open public spaces	390	990									
Commercial and industrial	600	1500									


lumita.
Inputs
Select contaminant from list below
Zn
Below needed to calculate fresh and aged ACLs
Enter cation exchange capacity (silver
thiourea method) (values from 0 to 100 cmolc/kg dwt)
17
Enter soil pH (calcium chloride method) (values from 1 to 14)
7.5
Below needed to calculate fresh and aged ABCs
Measured background concentration (mg/kg). Leave blank if no measured value
on for freeh ADCs only
or for fresh ABCs only Enter iron content (aqua regia method)
(values from 0 to 50%) to obtain estimate
of background concentration
7
or for aged ABCs only
Enter State (or closest State)
VIC
Enter traffic volume (high or low)
high

Outputs											
Land use	Zn soil-specific ElLs										
	(mg contaminant/kg dry soil)										
	Fresh	Aged									
National parks and areas of high conservation value	95	190									
Urban residential and open public spaces	270	660									
Commercial and industrial	410	1000									



Appendix L: Chain of Custody Documentation

Chain of Custody and Analysis Request

Chain of Custody and Analysis Request

AU02 USR LAB00020

From: Sarah Gould < SarahGould@eurofins.com>
Sent: Wednesday, 30 March 2016 9:29 AM

To: EnviroSampleVIC

Subject: FW: Eurofins | mgt Sample Receipt Advice - Report 494396 : Site DSI LILYDALE

(19476)

Attachments: 494396_COC.pdf; 494396_sample_receipt_coc.pdf; 494396_summary.pdf; 3471_

001.pdf

4ry

Sarah Gould

Phone: +61 3 8564 5053

Email: SarahGould@eurofins.com

ma25735 /36 (H).

ma. cs ()

----Original Message----

From: Madeleine Parris [mailto:madeleine.parris@prensa.com.au]

Sent: Wednesday, 30 March 2016 9:25 AM

To: Sarah Gould

Subject: FW: Eurofins | mgt Sample Receipt Advice - Report 494396 : Site DSI LILYDALE (19476)

Hey Sarah,

Hope you had a nice Easter break!

I filled out this COC late on Thursday and have just realised I forgot to put in the analysis for the QC samples. Could you please analyse QC1 for metals (M13), TRH and PAH. Could you also please send QC2 to envirolabs (with the envirolabs COC I have attached).

Many thanks:)

Maddie

Madeleine Parris | HSE Consultant | Prensa Pty Ltd

Office: 261-271 Wattletree Rd, Malvern VIC 3144 Postal Address: PO Box 2203, Wattletree Rd LPO, East Malvern VIC

3145

Phone: (03) 9508 0100 | Mobile: 0431 414 148

Email: madeleine.parris@prensa.com.au | Web: www.prensa.com.au

property > environment > safety >

PRIVILEGED - PRIVATE AND CONFIDENTIAL

DISCLAIMER

E-mail transmission cannot be guaranteed to be secure or error-free and e-mails may be interfered with, may contain computer viruses or other defects and may not be successfully replicated on other systems. The sender does not give any warranties nor accept any liability in relation to any of these matters. If you have any doubts about the authenticity of an e-mail purportedly sent by us, please contact us immediately. If you do not wish to receive further

SEND TO ENVIROLABS

Chain of Custody and Analysis Request

Client: Yarra R	01000	Con				1-										prensal	The same of the sa						
Client: Yarra Ranges Council Project Name: OSI Lilydale Site Address: 15 Anderson St, Lilydale, VIC 3140 Sampled By: 1989						Requested Analyses:										Page no.: of:							
Site Address:	ingaa	CAL				S										Prensa Job Number:	-						
15 Anderson St. Lilydola VIC 214						Metals	耳	I								19476							
Sampled By:	66	Joeses	, 100 317		15,5	8	A			-					Client number:	-							
(Sample (D	Matrix	Pres.	Containe			50	,	1						ļ		Y0003	Ì						
19476_QC2	Soil	1 Ce	Container	Date	Time	-										Comments:	-						
	0000	100	Soil Jar	23/3	-	×	\times	×									-						
																	1						
		 															-						
	+	-															┥						
		 															-						
		_															-						
									Ţ						1		-						
																EDVIROL BB 1a Dalmo	Services						
														_		ETVIROL RA 1a Dalmo	Drive						
			ļ									1			+	3CGreaty-V	Ht 2470						
												1			+-	1 000 NO: FB: ///31 67	63 25nn						
		ļ									1			-	+-	Date Received:	-{						
																Time Received: 12:00							
														-	+-	Received by M.C.	3.3°						
											+			_	+	Temp:Cog/Ambient	13.0						
									_	_	_			-	-	Cooling (fee)Icepack							
										+	-			+-		, integgroken/ledik							
										_	-			-			_						
							-		-		-]						
								-		-	+				-								
							-	-	_	-	+	-			-]						
Relinquished by:	Date:		Time:	Analysis	turnarou	nd tim	e.				-	L											
Couries sick was			_				d	L	_ 1 1	Pleas	e sen	d result	s to: M	actel	eine. parril@prensa.com.au]							
Received by: M.SAM) Date: 30/3/16 Time: (3:00			□ 24 hr □ 48 hr □ 3 - 5 days Standard Method of shipment:									And:C	nrist	ie batiste @prensa.com.au									
Additional comments:	18	12/10	Time: (3,00								Cont	act:	Mel: (0	3) 9508	0100	Bris: (07) 3367 8944							
				Lab rep	ort nun	iber:							Syd: (0:	2) 9033	8600	admin@prensa.com.au							
													PO Box	2203 W	/attlete	ree Rd LPO							
										Malvern East VIC 3145													

Authorised By: CBH | Issue Date: 23/10/2012 | Version: 4 PRCON3012 Chain of Custody (V4)

CONTROLLED DOCUMENT

This Document is Uncontrolled if Printed

Appendix M: NATA Accredited Analytical Results

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com.au

web: www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name: Prensa VIC

Contact name: Madeleine Parris
Project name: DSI LILYDALE

Project ID: 19476 COC number: Y0003 Turn around time: 5 Day

Date/Time received: Mar 24, 2016 6:39 PM

Eurofins | mgt reference: 494396

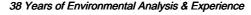
Sample information

- ☑ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- ✓ Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- ✓ All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- ☑ Appropriate sample containers have been used.
- ☑ Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Samples BH3_0.3 & BH5_0.5 ticked for both analysis & hold. Samples logged in for testing.

Contact notes


If you have any questions with respect to these samples please contact:

Sarah Gould on Phone: (+61) (8) 8154 3100 or by e.mail: SarahGould@eurofins.com

Results will be delivered electronically via e.mail to Madeleine Parris - madeleine.parris@prensa.com.au.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

ABN – 50 005 085 521 e.mail: EnviroSales@eurofins.com.au web: www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Client Manager: Sarah Gould

Company Name: Prensa VIC Order No.: Received: Mar 24, 2016 6:39 PM

 Address:
 261-271 Wattletree Rd
 Report #:
 494396
 Due:
 Apr 5, 2016

 Malvern
 Phone:
 9508 0100
 Priority:
 5 Day

VIC 3144 Fax: Sold of the Parris Gontact Name: Madeleine Parris

Project Name: DSI LILYDALE
Project ID: 19476

Sample Detail					Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
•	Laboratory where analysis is conducted																		<u> </u>	
	oratory - NATA S		271		Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	tory - NATA Site									-									₩	
	ratory - NATA Si	te # 20794																	₩	
External Labor				1															 	\vdash
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
19476_R1	Mar 23, 2016		Water	M16-Ma25718							Х				Х					Х
19476_TB1	Mar 23, 2016		Water	M16-Ma25719						Х										
19476_FB1	Mar 23, 2016		Water	M16-Ma25720		Х														
19476_BH6_0. 2	Mar 22, 2016		Soil	M16-Ma25721	Х		Х		Х							Х	Х	Х	Х	х
19476_BH6_0. 5	Mar 22, 2016		Soil	M16-Ma25722							Х	Х	Х	Х			Х			Х
19476_BH3_0.	Mar 22, 2016		Soil	M16-Ma25723							Х	Х	Х	Х			Х			Х
19476_BH3_0.	Mar 22, 2016		Soil	M16-Ma25724	Х		Х	Х	Х							Х	Х	Х	Х	Х

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

web: www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Prensa VIC Order No.: Received: Mar 24, 2016 6:39 PM

Address: 261-271 Wattletree Rd Report #: 494396 Due: Apr 5, 2016 Malvern Phone: 9508 0100 Priority: 5 Day

Contact Name: VIC 3144 Fax: Madeleine Parris

DSI LILYDALE **Project Name:**

Project ID: 19476 Eurofins | mgt Client Manager: Sarah Gould

Sample Detail					Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Laboratory where analysis is conducted																			<u> </u>	
		Site # 1254 & 14	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х
	ntory - NATA Site																		┼	\vdash
External Labor	ratory - NATA S	ite # 20794																	+	
5	atory																		+	
	Mar 23, 2016		Soil	M16-Ma25725	Х		Х	Х	Х							Х	Х	Х	Х	Х
19476_BH4_0. 55	Mar 23, 2016		Soil	M16-Ma25726							Х	Х	Х	Х			Х			Х
19476_BH7_0. 2	Mar 23, 2016		Soil	M16-Ma25727							Х	Х	Х		Х		Х			Х
19476_BH7_0. 5	Mar 23, 2016		Soil	M16-Ma25728	Х		Х		Х							Х	Х		Х	Х
19476_BH2_0. 2	Mar 23, 2016		Soil	M16-Ma25729							Х	Х	Х	Х			Х			Х
19476_BH2_0.	Mar 23, 2016		Soil	M16-Ma25730							х	Х	Х	Х			Х			Х

3-5 | Oak

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Prensa VIC

Address: 261-271 Wattletree Rd

Malvern VIC 3144

Project Name: DSI LILYDALE

Project ID: 19476

Order No.:

Report #: Phone: 494396 9508 0100

web : www.eurofins.com.au

Fax:

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

Priority: Contact Name:

Received:

Due:

Madeleine Parris

Mar 24, 2016 6:39 PM

Eurofins | mgt Client Manager: Sarah Gould

Apr 5, 2016

5 Day

		Sample Detail			Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
	ere analysis is co oratory - NATA S		274		X	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
	tory - NATA Site		211		^	^	^			^		^	^	^	^	^	^	^		
	ratory - NATA Si																			
External Labora		10 11 201 04																		
5																				
19476_BH5_0. 35	Mar 24, 2016		Soil	M16-Ma25731							Х	Х	Х		Х		Х			Х
	Mar 24, 2016		Soil	M16-Ma25732							Х	Х	Х	Х			Х			Х
19476_BH10_0 .3			Soil	M16-Ma25733							Х	Х	Х		Х		Х			Х
19476_BH10_0 .5	Mar 24, 2016		Soil	M16-Ma25734							Х	Х	Х	Х			Х			Х
19476_QC1	Mar 23, 2016		Soil	M16-Ma25735		Х														
19476_QC2	Mar 23, 2016		Soil	M16-Ma25736		Х														
19476_BH6_1.	Mar 22, 2016		Soil	M16-Ma25737		Х														

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Prensa VIC Order No.: Received: Mar 24, 2016 6:39 PM

Address: 261-271 Wattletree Rd Report #: 494396 Due: Apr 5, 2016 Malvern Phone: 9508 0100 Priority: 5 Day

Contact Name: VIC 3144 Fax: Madeleine Parris

Project Name: DSI LILYDALE

Project ID: 19476 Eurofins | mgt Client Manager: Sarah Gould

		Sample Detail			Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
	ere analysis is c	onducted Site # 1254 & 14	274		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	X	Х
	tory - NATA Site		211		^	^	^	^	^	^	^	^	^	^	^	^	^	^	+^	<u> </u>
	ratory - NATA Si																		+	
External Labor																				
0																				
19476_BH6_1. 3	Mar 22, 2016		Soil	M16-Ma25738		Х														
19476_BH6_1. 5	Mar 22, 2016		Soil	M16-Ma25739		Х														
19476_BH3_0. 8	Mar 22, 2016		Soil	M16-Ma25740		Х														
19476_BH3_1.	Mar 22, 2016		Soil	M16-Ma25741		Х														
19476_BH4_1. 1	Mar 23, 2016		Soil	M16-Ma25742		Х														
19476_BH7_1.	Mar 23, 2016		Soil	M16-Ma25743		Х														

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Prensa VIC Order No.: Received: Mar 24, 2016 6:39 PM

Address: 261-271 Wattletree Rd Report #: 494396 Due: Apr 5, 2016 Malvern Phone: 9508 0100 Priority: 5 Day

Contact Name: VIC 3144 Fax: Madeleine Parris

Project Name: DSI LILYDALE

Project ID: 19476 Eurofins | mgt Client Manager: Sarah Gould

		Sample Detail			Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
	ere analysis is c																			
		Site # 1254 & 14	271		Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	tory - NATA Site																		-	\vdash
	ratory - NATA Si	ite # 20794																	\vdash	\vdash
External Labor 0	atory																		\vdash	\vdash
19476_BH2_1.	Mar 23, 2016		Soil	M16-Ma25744		Х														
19476_BH2_1. 5	Mar 23, 2016		Soil	M16-Ma25745		Х														
19476_BH2_2. 0	Mar 23, 2016		Soil	M16-Ma25746		Х														
19476_BH5_1. 0	Mar 24, 2016		Soil	M16-Ma25747		Х														
19476_BH5_1. 5	Mar 24, 2016		Soil	M16-Ma25748		Х														
19476_BH5_2.	Mar 24, 2016		Soil	M16-Ma25749		Х														

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Prensa VIC Order No.: Received: Mar 24, 2016 6:39 PM

Address: 261-271 Wattletree Rd Report #: 494396 Due: Apr 5, 2016 Malvern Phone: 9508 0100 Priority: 5 Day

Contact Name: VIC 3144 Fax: Madeleine Parris

DSI LILYDALE **Project Name:**

Project ID: 19476 Eurofins | mgt Client Manager: Sarah Gould

		Sample Detail			Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	ge Ca	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Laboratory whe	ere analysis is c	onducted																		
Melbourne Lab	oratory - NATA	Site # 1254 & 14	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ
Sydney Labora	tory - NATA Site	e # 18217																		
Brisbane Labor	ratory - NATA S	ite # 20794																		
External Labora	atory																			
0																				
19476_BH10_1	Mar 24, 2016		Soil	M16-Ma25750		Х														

Prensa VIC 261-271 Wattletree Rd Malvern VIC 3144

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Madeleine Parris

Report 494396-S
Project name DSI LILYDALE

Project ID 19476 Received Date Mar 24, 2016

Client Sample ID			19476_BH6_0.	19476_BH6_0.	19476_BH3_0.	19476_BH3_0. 5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M16-Ma25721	M16-Ma25722	M16-Ma25723	M16-Ma25724
Date Sampled			Mar 22, 2016	Mar 22, 2016	Mar 22, 2016	Mar 22, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	120	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	120	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	240	< 50	< 50	< 50
Volatile Organics	•					
1.1-Dichloroethane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.1-Dichloroethene	0.05	mg/kg	< 0.05	-	-	< 0.05
1.1.1-Trichloroethane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.1.1.2-Tetrachloroethane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.1.2-Trichloroethane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.1.2.2-Tetrachloroethane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.2-Dibromoethane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.2-Dichlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
1.2-Dichloroethane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.2-Dichloropropane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.2.3-Trichloropropane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.2.4-Trimethylbenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
1.3-Dichlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
1.3-Dichloropropane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.3.5-Trimethylbenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
1.4-Dichlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
2-Butanone (MEK)	0.05	mg/kg	< 0.05	-	-	< 0.05
2-Propanone (Acetone)	0.05	mg/kg	< 0.05	-	-	< 0.05
4-Chlorotoluene	0.05	mg/kg	< 0.05	-	-	< 0.05
4-Methyl-2-pentanone (MIBK)	0.05	mg/kg	< 0.05	-	-	< 0.05
Allyl chloride	0.05	mg/kg	< 0.05	-	-	< 0.05
Benzene	0.1	mg/kg	< 0.1	-	-	< 0.1
Bromobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
Bromochloromethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Bromodichloromethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Bromoform	0.05	mg/kg	< 0.05	-	-	< 0.05
Bromomethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Carbon disulfide	0.05	mg/kg	< 0.05	-	-	< 0.05
Carbon Tetrachloride	0.05	mg/kg	< 0.05	-	-	< 0.05

Client Sample ID			19476_BH6_0.	19476_BH6_0.	19476_BH3_0.	19476_BH3_0.
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins mgt Sample No.			M16-Ma25721	M16-Ma25722	M16-Ma25723	M16-Ma25724
Date Sampled			Mar 22, 2016	Mar 22, 2016	Mar 22, 2016	Mar 22, 2016
Test/Reference	LOR	Unit				
Volatile Organics		_				
Chlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
Chloroethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Chloroform	0.05	mg/kg	< 0.05	-	-	< 0.05
Chloromethane	0.05	mg/kg	< 0.05	-	-	< 0.05
cis-1.2-Dichloroethene	0.05	mg/kg	< 0.05	-	-	< 0.05
cis-1.3-Dichloropropene	0.05	mg/kg	< 0.05	-	-	< 0.05
Dibromochloromethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Dibromomethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Dichlorodifluoromethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	< 0.1
Iodomethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Isopropyl benzene (Cumene)	0.05	mg/kg	< 0.05	-	-	< 0.05
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	< 0.2
Methylene Chloride	0.05	mg/kg	< 0.05	-	-	< 0.05
o-Xylene	0.1	mg/kg	< 0.1	-	-	< 0.1
Styrene	0.05	mg/kg	< 0.05	-	-	< 0.05
Tetrachloroethene	0.05	mg/kg	< 0.05	-	-	< 0.05
Toluene	0.1	mg/kg	< 0.1	-	-	< 0.1
trans-1.2-Dichloroethene	0.05	mg/kg	< 0.05	-	-	< 0.05
trans-1.3-Dichloropropene	0.05	mg/kg	< 0.05	-	-	< 0.05
Trichloroethene	0.05	mg/kg	< 0.05	-	-	< 0.05
Trichlorofluoromethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Vinyl chloride	0.05	mg/kg	< 0.05	-	-	< 0.05
Xylenes - Total	0.3	mg/kg	< 0.3	-	-	< 0.3
Fluorobenzene (surr.)	1	%	61	-	-	63
4-Bromofluorobenzene (surr.)	1	%	67	-	-	72
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions	_				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			19476_BH6_0.	19476_BH6_0.	19476_BH3_0.	19476_BH3_0.
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M16-Ma25721	M16-Ma25722	M16-Ma25723	M16-Ma25724
						1
Date Sampled	1.05		Mar 22, 2016	Mar 22, 2016	Mar 22, 2016	Mar 22, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		T ,				
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	130	105	97	58
p-Terphenyl-d14 (surr.)	1	%	133	98	96	87
Organochlorine Pesticides	0.05		0.05			0.05
Bifenthrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Chlordanes - Total	0.1	mg/kg	-	< 0.1	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	< 0.05	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	< 0.05	-
a-BHC	0.05	mg/kg	-	< 0.05	< 0.05	-
Aldrin	0.05	mg/kg	-	< 0.05	< 0.05	-
b-BHC d-BHC	0.05	mg/kg	-	< 0.05	< 0.05	-
Dieldrin	0.05	mg/kg	-	< 0.05 < 0.05	< 0.05	
Endosulfan I	0.05 0.05	mg/kg	-	< 0.05	< 0.05 < 0.05	-
Endosulfan II	0.05	mg/kg	-	< 0.05	< 0.05	-
		mg/kg	-			-
Endosulfan sulphate Endrin	0.05 0.05	mg/kg	-	< 0.05 < 0.05	< 0.05 < 0.05	-
Endrin aldehyde	0.05	mg/kg mg/kg	_	< 0.05	< 0.05	
Endrin ketone	0.05	mg/kg	_	< 0.05	< 0.05	
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	< 0.05	_
Heptachlor	0.05	mg/kg	_	< 0.05	< 0.05	_
Heptachlor epoxide	0.05	mg/kg	_	< 0.05	< 0.05	_
Hexachlorobenzene	0.05	mg/kg	_	< 0.05	< 0.05	_
Methoxychlor	0.05	mg/kg	-	< 0.05	< 0.05	_
Toxaphene	1	mg/kg	-	< 1	< 1	_
Dibutylchlorendate (surr.)	1	%	_	100	100	_
Tetrachloro-m-xylene (surr.)	1	%	-	125	104	-
Organophosphorous Pesticides	<u>'</u>	_				
Bolstar	0.2	mg/kg	-	< 0.2	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-	=	< 0.2
Chlorpyrifos	0.2	mg/kg	-	< 0.2	< 0.2	-
Demeton-O	0.2	mg/kg	-	< 0.2	< 0.2	-
Diazinon	0.2	mg/kg	-	< 0.2	< 0.2	-
Dichlorvos	0.2	mg/kg	-	< 0.2	< 0.2	-
Disulfoton	0.2	mg/kg	-	< 0.2	< 0.2	-
Ethion	0.2	mg/kg	-	< 0.2	< 0.2	-
Ethoprop	0.2	mg/kg	-	< 0.2	< 0.2	-
Fenitrothion	0.2	mg/kg	-	< 0.2	< 0.2	-
Fensulfothion	0.2	mg/kg	-	< 0.2	< 0.2	-
Fenthion	0.2	mg/kg	-	< 0.2	< 0.2	-
Merphos	0.2	mg/kg	-	< 0.2	< 0.2	-
Methyl azinphos	0.2	mg/kg	-	< 0.2	< 0.2	-
Methyl parathion	0.2	mg/kg	-	< 0.2	< 0.2	-
Mevinphos	0.2	mg/kg	-	< 0.2	< 0.2	-
Naled	0.5	mg/kg	-	< 0.5	< 0.5	-
Phorate	0.2	mg/kg	-	< 0.2	< 0.2	-

Client Sample ID			19476_BH6_0.	19476_BH6_0.	19476_BH3_0.	19476_BH3_0.
·			2	5	3	5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M16-Ma25721	M16-Ma25722	M16-Ma25723	M16-Ma25724
Date Sampled			Mar 22, 2016	Mar 22, 2016	Mar 22, 2016	Mar 22, 2016
Test/Reference	LOR	Unit				
Organophosphorous Pesticides						
Ronnel	0.2	mg/kg	-	< 0.2	< 0.2	-
Tokuthion	0.2	mg/kg	-	< 0.2	< 0.2	-
Trichloronate	0.2	mg/kg	-	< 0.2	< 0.2	-
Triphenylphosphate (surr.)	1	%	-	90	90	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	-	-	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	101	-	-	91
Tetrachloro-m-xylene (surr.)	1	%	129	-	-	111
Triazines						
Atrazine	0.2	mg/kg	< 0.2	-	-	< 0.2
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	170	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
NEPM 2013 Acid Herbicides	1					
Picloram*	0.5	mg/kg	< 0.5	-	-	< 0.5
2.4-D	0.5	mg/kg	< 0.5	-	-	< 0.5
2.4.5-T	0.5	mg/kg	< 0.5	-	-	< 0.5
MCPA	0.5	mg/kg	< 0.5	-	-	< 0.5
MCPB	0.5	mg/kg	< 0.5	-	-	< 0.5
Mecoprop	0.5	mg/kg	< 0.5	-	-	< 0.5
Warfarin (surr.)	1	%	84	-	-	85
NEPM 2013 Organochlorine Pesticides						
Comments			G01			
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	< 0.05
Mirex	0.01	mg/kg	< 0.05	-	-	< 0.01
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.5	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	< 0.1
Dieldrin Endesulfen I	0.05	mg/kg	0.53	-	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin Hontachlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Hexachlorobenzene Mothoxychlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Methoxychlor Toxaphene	0.05	mg/kg	< 0.05	-	-	< 0.05
Dibutylchlorendate (surr.)	1 1	mg/kg %	< 1 101	-	-	< 1 91
Tetrachloro-m-xylene (surr.)	1	%	129	-	-	111

Client Sample ID			19476_BH6_0.	19476_BH6_0.	19476_BH3_0.	19476_BH3_0.
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M16-Ma25721	M16-Ma25722	M16-Ma25723	M16-Ma25724
Date Sampled			Mar 22, 2016	Mar 22, 2016	Mar 22, 2016	Mar 22, 2016
Test/Reference	LOR	Unit				
NEPM 2013 Phenois						
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	-	-	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	-	-	< 0.4
Pentachlorophenol	1.0	mg/kg	< 1	-	-	< 1
Phenol	0.5	mg/kg	< 0.5	-	-	< 0.5
Phenol-d6 (surr.)	1	%	114	-	-	47
	·	•				
Chloride	5	mg/kg	180	-	-	90
Chromium (hexavalent)	1	mg/kg	< 1	-	-	< 1
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	190	-	-	120
Cyanide (free)	5	mg/kg	< 5	-	-	< 5
pH (1:5 Aqueous extract)	0.1	pH Units	6.7	-	-	8.0
pH (units)(1:5 soil:CaCl2 extract)	0.1	pH Units	=	-	-	7.5
Sulphate (as S)	10	mg/kg	< 10	-	-	12
% Moisture	1	%	15	12	4.5	15
Heavy Metals						
Arsenic	2	mg/kg	8.4	8.9	17	12
Beryllium	2	mg/kg	< 2	-	-	< 2
Boron	10	mg/kg	< 10	-	-	< 10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	-	32	< 5	-
Cobalt	5	mg/kg	6.1	-	-	< 5
Copper	5	mg/kg	20	13	< 5	5.9
Lead	5	mg/kg	28	27	< 5	16
Manganese	5	mg/kg	220	-	-	92
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	10	mg/kg	-	< 10	< 10	-
Nickel	5	mg/kg	16	11	< 5	12
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	5	mg/kg	-	< 5	< 5	-
Tin	10	mg/kg	-	< 10	< 10	-
Zinc	5	mg/kg	170	75	15	13
Ion Exchange Properties		T				
Cation Exchange Capacity	0.05	meq/100g	26	-	-	17

Client Sample ID			19476_BH4_0. 33	19476_BH4_0. 55	19476_BH7_0. 2	19476_BH7_0. 5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M16-Ma25725	M16-Ma25726	M16-Ma25727	M16-Ma25728
Date Sampled			Mar 23, 2016	Mar 23, 2016	Mar 23, 2016	Mar 23, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	57	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	57	< 50

Client Sample ID			19476_BH4_0. 33	19476_BH4_0. 55	19476_BH7_0.	19476_BH7_0.
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M16-Ma25725	M16-Ma25726	M16-Ma25727	M16-Ma25728
Date Sampled			Mar 23, 2016	Mar 23, 2016	Mar 23, 2016	Mar 23, 2016
1	100	l lasis	Wiai 23, 2010	IVIAI 23, 2010	Wiai 23, 2010	Wai 23, 2010
Test/Reference	LOR	Unit				
Volatile Organics	0.05		0.05			2.25
1.1-Dichloroethane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.1-Dichloroethene	0.05	mg/kg	< 0.05	-	-	< 0.05
1.1.1-Trichloroethane 1.1.1.2-Tetrachloroethane	0.05	mg/kg	< 0.05 < 0.05	-	-	< 0.05 < 0.05
1.1.2-Trichloroethane	0.05	mg/kg mg/kg	< 0.05	-	-	< 0.05
1.1.2-Theriloroethane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.2-Dibromoethane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.2-Dichlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
1.2-Dichloroethane	0.05	mg/kg	< 0.05	-	_	< 0.05
1.2-Dichloropropane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.2.3-Trichloropropane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.2.4-Trimethylbenzene	0.05	mg/kg	< 0.05	-	_	< 0.05
1.3-Dichlorobenzene	0.05	mg/kg	< 0.05	_	_	< 0.05
1.3-Dichloropropane	0.05	mg/kg	< 0.05	-	-	< 0.05
1.3.5-Trimethylbenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
1.4-Dichlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
2-Butanone (MEK)	0.05	mg/kg	< 0.05	-	-	< 0.05
2-Propanone (Acetone)	0.05	mg/kg	< 0.05	-	-	< 0.05
4-Chlorotoluene	0.05	mg/kg	< 0.05	-	-	< 0.05
4-Methyl-2-pentanone (MIBK)	0.05	mg/kg	< 0.05	-	-	< 0.05
Allyl chloride	0.05	mg/kg	< 0.05	-	-	< 0.05
Benzene	0.1	mg/kg	< 0.1	-	-	< 0.1
Bromobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
Bromochloromethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Bromodichloromethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Bromoform	0.05	mg/kg	< 0.05	-	-	< 0.05
Bromomethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Carbon disulfide	0.05	mg/kg	< 0.05	-	-	< 0.05
Carbon Tetrachloride	0.05	mg/kg	< 0.05	-	-	< 0.05
Chlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
Chloroethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Chloroform	0.05	mg/kg	< 0.05	-	-	< 0.05
Chloromethane	0.05	mg/kg	< 0.05	-	-	< 0.05
cis-1.2-Dichloroethene	0.05	mg/kg	< 0.05	-	-	< 0.05
cis-1.3-Dichloropropene	0.05	mg/kg	< 0.05	-	-	< 0.05
Dibromochloromethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Dibromomethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Dichlorodifluoromethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	< 0.1
lodomethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Isopropyl benzene (Cumene)	0.05	mg/kg	< 0.05	-	-	< 0.05
m&p-Xylenes Mathylana Chlorida	0.2	mg/kg	< 0.2	-	-	< 0.2
Methylene Chloride	0.05	mg/kg	< 0.05	-	-	< 0.05
o-Xylene Styrene	0.1	mg/kg	< 0.1 < 0.05	-	-	< 0.1 < 0.05
Tetrachloroethene	0.05	mg/kg	< 0.05	-	-	< 0.05
Toluene	0.05	mg/kg mg/kg	< 0.05	-	-	< 0.05
trans-1.2-Dichloroethene	0.05	mg/kg	< 0.05	-	-	< 0.15
trans-1.3-Dichloropropene	0.05	mg/kg	< 0.05	-	_	< 0.05

Client Sample ID			19476_BH4_0.	19476_BH4_0.	19476_BH7_0.	19476_BH7_0.
Sample Matrix			Soil	Soil	Soil	Soil
·						
Eurofins mgt Sample No.			M16-Ma25725	M16-Ma25726	M16-Ma25727	M16-Ma25728
Date Sampled			Mar 23, 2016	Mar 23, 2016	Mar 23, 2016	Mar 23, 2016
Test/Reference	LOR	Unit				
Volatile Organics	<u> </u>	T				
Trichloroethene	0.05	mg/kg	< 0.05	-	-	< 0.05
Trichlorofluoromethane	0.05	mg/kg	< 0.05	-	-	< 0.05
Vinyl chloride	0.05	mg/kg	< 0.05	-	-	< 0.05
Xylenes - Total	0.3	mg/kg	< 0.3	-	-	< 0.3
Fluorobenzene (surr.)	1	%	54	-	-	57
4-Bromofluorobenzene (surr.)	1	%	62	-	-	66
Total Recoverable Hydrocarbons - 2013 NEPM Frac						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Indeno(1.2.3-cd)pyrene Naphthalene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	84	77	64	90
p-Terphenyl-d14 (surr.)	1	%	106	98	82	110
Organochlorine Pesticides		1 70	100		02	110
Bifenthrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Chlordanes - Total	0.1	mg/kg	-	< 0.1	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	< 0.05	< 0.05	_
4.4'-DDE	0.05	mg/kg	-	< 0.05	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	< 0.05	< 0.05	-
a-BHC	0.05	mg/kg	-	< 0.05	< 0.05	-
Aldrin	0.05	mg/kg	-	< 0.05	< 0.05	-
b-BHC	0.05	mg/kg	-	< 0.05	< 0.05	-
d-BHC	0.05	mg/kg	-	< 0.05	< 0.05	-
Dieldrin	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan I	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan II	0.05	mg/kg	-	< 0.05	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin	0.05	mg/kg	-	< 0.05	< 0.05	-

Client Sample ID			19476_BH4_0.	19476_BH4_0. 55	19476_BH7_0.	19476_BH7_0.
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M16-Ma25725	M16-Ma25726	M16-Ma25727	M16-Ma25728
Date Sampled			Mar 23, 2016	Mar 23, 2016	Mar 23, 2016	Mar 23, 2016
•	1.00	1.1-20	Wiai 23, 2016	Wai 23, 2016	Wiai 23, 2016	Wai 23, 2016
Test/Reference	LOR	Unit				
Organochlorine Pesticides	0.05			0.05	0.05	
Endrin aldehyde	0.05	mg/kg	-	< 0.05	< 0.05	-
Endrin ketone	0.05	mg/kg	-	< 0.05	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	< 0.05	-
Heptachlor	0.05	mg/kg	-	< 0.05	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	< 0.05	-
Methoxychlor	0.05	mg/kg	-	< 0.05	< 0.05	-
Toxaphene	1	mg/kg	-	< 1	< 1	-
Dibutylchlorendate (surr.)	1	%	-	135	137	-
Tetrachloro-m-xylene (surr.)	1	%	-	112	83	-
Organophosphorous Pesticides	<u> </u>	T				
Bolstar	0.2	mg/kg	-	< 0.2	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.2	-	-	< 0.2
Chlorpyrifos	0.2	mg/kg	-	< 0.2	< 0.2	-
Demeton-O	0.2	mg/kg	-	< 0.2	< 0.2	-
Diazinon	0.2	mg/kg	-	< 0.2	< 0.2	-
Dichlorvos	0.2	mg/kg	-	< 0.2	< 0.2	-
Disulfoton	0.2	mg/kg	-	< 0.2	< 0.2	-
Ethion	0.2	mg/kg	-	< 0.2	< 0.2	-
Ethoprop	0.2	mg/kg	-	< 0.2	< 0.2	-
Fenitrothion	0.2	mg/kg	-	< 0.2	< 0.2	-
Fensulfothion	0.2	mg/kg	-	< 0.2	< 0.2	-
Fenthion	0.2	mg/kg	-	< 0.2	< 0.2	-
Merphos	0.2	mg/kg	-	< 0.2	< 0.2	-
Methyl azinphos	0.2	mg/kg	-	< 0.2	< 0.2	-
Methyl parathion	0.2	mg/kg	-	< 0.2	< 0.2	-
Mevinphos	0.2	mg/kg	-	< 0.2	< 0.2	-
Naled	0.5	mg/kg	-	< 0.5	< 0.5	-
Phorate	0.2	mg/kg	-	< 0.2	< 0.2	-
Ronnel	0.2	mg/kg	-	< 0.2	< 0.2	-
Tokuthion	0.2	mg/kg	-	< 0.2	< 0.2	-
Trichloronate	0.2	mg/kg	-	< 0.2	< 0.2	-
Triphenylphosphate (surr.)	1	%	-	73	68	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	-	-	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	86	-	=	76
Tetrachloro-m-xylene (surr.)	1	%	111	-	-	95
Triazines						
Atrazine	0.2	mg/kg	< 0.2	-	-	< 0.2

Client Sample ID			19476_BH4_0.	19476_BH4_0.	19476_BH7_0.	19476_BH7_0.
•			33	55	2	5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M16-Ma25725	M16-Ma25726	M16-Ma25727	M16-Ma25728
Date Sampled			Mar 23, 2016	Mar 23, 2016	Mar 23, 2016	Mar 23, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
NEPM 2013 Acid Herbicides						
Picloram*	0.5	mg/kg	< 0.5	-	-	< 0.5
2.4-D	0.5	mg/kg	< 0.5	-	-	< 0.5
2.4.5-T	0.5	mg/kg	< 0.5	-	-	< 0.5
MCPA	0.5	mg/kg	< 0.5	-	-	< 0.5
МСРВ	0.5	mg/kg	< 0.5	-	-	< 0.5
Mecoprop	0.5	mg/kg	< 0.5	-	-	< 0.5
Warfarin (surr.)	1	%	91	-	-	89
NEPM 2013 Organochlorine Pesticides						
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	< 0.05
Mirex	0.01	mg/kg	< 0.01	-	-	< 0.01
4.4'-DDD	0.05	mg/kg	< 0.05	-	_	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	-	_	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	< 0.05
Aldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	< 0.1
Dieldrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	-	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	-	-	< 0.05
Endrin	0.05	mg/kg	< 0.05	-	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	-	-	< 0.05
Toxaphene	1	mg/kg	< 1	-	-	< 1
Dibutylchlorendate (surr.)	1	%	86	-	-	76
Tetrachloro-m-xylene (surr.)	1	%	111	-	-	95
NEPM 2013 Phenois						
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	-	-	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	-	-	< 0.4
Pentachlorophenol	1.0	mg/kg	< 1	-	-	< 1
Phenol	0.5	mg/kg	< 0.5	-	-	< 0.5
Phenol-d6 (surr.)	1	%	69	-	-	82
Chloride	5	mg/kg	17	-	-	100
Chromium (hexavalent)	1	mg/kg	< 1	-	< 1	< 1
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	160	-	-	-
Cyanide (free)	5	mg/kg	< 5	-	-	< 5
pH (1:5 Aqueous extract)	0.1	pH Units	8.4	-	-	7.9
pH (units)(1:5 soil:CaCl2 extract)	0.1	pH Units	7.6	-	-	-
Sulphate (as S)	10	mg/kg	13	-	-	15
% Moisture	1	%	14	27	5.5	15

Client Sample ID			19476_BH4_0. 33	19476_BH4_0. 55	19476_BH7_0. 2	19476_BH7_0. 5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M16-Ma25725	M16-Ma25726	M16-Ma25727	M16-Ma25728
Date Sampled			Mar 23, 2016	Mar 23, 2016	Mar 23, 2016	Mar 23, 2016
Test/Reference	LOR	Unit				
Heavy Metals	•					
Arsenic	2	mg/kg	13	17	6.4	7.3
Beryllium	2	mg/kg	< 2	-	< 2	< 2
Boron	10	mg/kg	< 10	-	< 10	< 10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	-	24	-	-
Cobalt	5	mg/kg	18	-	< 5	< 5
Copper	5	mg/kg	38	< 5	7.8	< 5
Lead	5	mg/kg	12	15	7.7	16
Manganese	5	mg/kg	640	-	53	17
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	10	mg/kg	-	< 10	-	-
Nickel	5	mg/kg	57	5.7	8.4	< 5
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	5	mg/kg	-	< 5	-	-
Tin	10	mg/kg	-	< 10	-	-
Zinc	5	mg/kg	39	10	24	< 5
Ion Exchange Properties						
Cation Exchange Capacity	0.05	meq/100g	29	-	-	-

Client Sample ID			19476_BH2_0.	19476_BH2_0. 5	19476_BH5_0. 35	19476_BH5_0. 5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M16-Ma25729	M16-Ma25730	M16-Ma25731	M16-Ma25732
Date Sampled			Mar 23, 2016	Mar 23, 2016	Mar 24, 2016	Mar 24, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

				1		1
Client Sample ID			19476_BH2_0. 2	19476_BH2_0. 5	19476_BH5_0. 35	19476_BH5_0. 5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M16-Ma25729	M16-Ma25730	M16-Ma25731	M16-Ma25732
Date Sampled			Mar 23, 2016	Mar 23, 2016	Mar 24, 2016	Mar 24, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	104	93	103	93
p-Terphenyl-d14 (surr.)	1	%	98	89	97	89
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	82	78	128	95
Tetrachloro-m-xylene (surr.)	1	%	91	76	74	102
Organophosphorous Pesticides						
Bolstar	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2

Client Sample ID			19476_BH2_0.	19476_BH2_0.	19476_BH5_0. 35	19476_BH5_0. 5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M16-Ma25729	M16-Ma25730	M16-Ma25731	M16-Ma25732
Date Sampled			Mar 23, 2016	Mar 23, 2016	Mar 24, 2016	Mar 24, 2016
Test/Reference	LOR	Unit				
Organophosphorous Pesticides						
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Naled	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phorate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	62	58	63	57
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions	_				
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Chromium (hexavalent)	1	mg/kg	-	-	< 1	-
% Moisture	1	%	8.8	10	11	24
Heavy Metals						
Arsenic	2	mg/kg	8.5	7.3	6.3	8.5
Beryllium	2	mg/kg	-	-	< 2	-
Boron	10	mg/kg	-	-	< 10	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	8.7	17	=	17
Cobalt	5	mg/kg	-	=	< 5	-
Copper	5	mg/kg	5.6	7.7	< 5	< 5
Lead	5	mg/kg	29	9.3	7.5	16
Manganese	5	mg/kg	-	-	21	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	10	mg/kg	< 10	< 10	=	< 10
Nickel	5	mg/kg	7.5	9.0	9.4	< 5
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	5	mg/kg	< 5	< 5	=	< 5
Tin	10	mg/kg	< 10	< 10	-	< 10
Zinc	5	mg/kg	27	20	10.0	< 5

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			19476_BH10_0 .3 Soil M16-Ma25733 Mar 24, 2016	19476_BH10_0 .5 Soil M16-Ma25734 Mar 24, 2016	19476_QC1 Soil M16-Ma25735 Mar 23, 2016
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50

Client Sample ID			19476_BH10_0	19476_BH10_0	19476_QC1
Sample Matrix			Soil	Soil	Soil
•					
Eurofins mgt Sample No.			M16-Ma25733	M16-Ma25734	M16-Ma25735
Date Sampled			Mar 24, 2016	Mar 24, 2016	Mar 23, 2016
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 2013 NEPN	1 Fractions				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
Polycyclic Aromatic Hydrocarbons	1	1			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	101	100	87
p-Terphenyl-d14 (surr.)	1	%	96	94	90
Organochlorine Pesticides	'				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	_
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-
a-BHC	0.05	mg/kg	< 0.05	< 0.05	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	-
Toxaphene	1	mg/kg	< 1	< 1	-

Client Sample ID			19476_BH10_0	19476_BH10_0	19476_QC1
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			M16-Ma25733	M16-Ma25734	M16-Ma25735
Date Sampled			Mar 24, 2016	Mar 24, 2016	Mar 23, 2016
•	1.00	1.1-21	Wai 24, 2016	Wai 24, 2016	Wai 23, 2016
Test/Reference	LOR	Unit			
Organochlorine Pesticides					
Dibutylchlorendate (surr.)	1	%	138	132	-
Tetrachloro-m-xylene (surr.)		%	91	74	-
Organophosphorous Pesticides					
Bolstar	0.2	mg/kg	< 0.2	< 0.2	-
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2	-
Demeton-O	0.2	mg/kg	< 0.2	< 0.2	-
Diazinon	0.2	mg/kg	< 0.2	< 0.2	-
Dichlorvos	0.2	mg/kg	< 0.2	< 0.2	-
Disulfoton	0.2	mg/kg	< 0.2	< 0.2	-
Ethorron	0.2	mg/kg	< 0.2 < 0.2	< 0.2	=
Ethoprop Fenitrothion	0.2	mg/kg	< 0.2	< 0.2 < 0.2	-
Fensifothion Fensulfothion	0.2	mg/kg	< 0.2		
		mg/kg	< 0.2	< 0.2	=
Fenthion Morphos	0.2	mg/kg	< 0.2	< 0.2	=
Merphos Methyl azinphos	0.2	mg/kg	< 0.2	< 0.2 < 0.2	-
Methyl parathion	0.2	mg/kg mg/kg	< 0.2	< 0.2	-
Mevinphos	0.2	mg/kg	< 0.2	< 0.2	-
Naled	0.2	mg/kg	< 0.5	< 0.5	_
Phorate	0.3	mg/kg	< 0.2	< 0.2	_
Ronnel	0.2	mg/kg	< 0.2	< 0.2	-
Tokuthion	0.2	mg/kg	< 0.2	< 0.2	
Trichloronate	0.2	mg/kg	< 0.2	< 0.2	_
Triphenylphosphate (surr.)	1	%	61	60	_
Total Recoverable Hydrocarbons - 2013 NEPM		70	01	00	
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
11117034-040	100	ilig/kg	< 100	< 100	< 100
Chromium (hexavalent)	1	mg/kg	< 1		< 1
% Moisture	1	%	8.2	8.4	11
Heavy Metals		/0	0.2	0.4	11
Arsenic	2	mg/kg	13	5.3	8.6
Beryllium	2	mg/kg	< 2		< 2
Boron	10	mg/kg	< 10	_	< 10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg		7.0	
Cobalt	5	mg/kg	23	-	< 5
Copper	5	mg/kg	57	< 5	6.5
Lead	5	mg/kg	11	13	35
Manganese	5	mg/kg	960	-	100
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Molybdenum	10	mg/kg	-	< 10	-
Nickel	5	mg/kg	100	< 5	8.4
Selenium	2	mg/kg	< 2	< 2	< 2
Silver	5	mg/kg	-	< 5	-
Tin	10	mg/kg	-	< 10	-
Zinc	5	mg/kg	58	6.5	32

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Melbourne	Extracted Mar 31, 2016	Holding Time 14 Day
- Method: TRH C6-C36 - LTM-ORG-2010 Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: TRH C6-C40 - LTM-ORG-2010	Melbourne	Mar 30, 2016	14 Day
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 31, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010 Volatile Organics	Melbourne	Mar 29, 2016	7 Day
- Method: USEPA 8260 - MGT 350A Volatile Organics by GCMS Organochlorine Pesticides	Melbourne	Mar 29, 2016	14 Day
- Method: USEPA 8081 Organochlorine Pesticides Organophosphorous Pesticides	Melbourne	Mar 31, 2016	14 Day
- Method: USEPA 8270 Organophosphorus Pesticides Chloride	Melbourne	Mar 29, 2016	28 Day
- Method: MGT 1100A pH (1:5 Aqueous extract)	Melbourne	Mar 30, 2016	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE pH (units)(1:5 soil:CaCl2 extract)	Melbourne	Mar 30, 2016	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE Sulphate (as S)	Melbourne	Mar 29, 2016	28 Day
- Method: In house MGT1110A (SO4 by Discrete Analyser) IWRG 621 Metals: Metals M12	Melbourne	Mar 29, 2016	28 Day
 Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury) NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding Me 	thyl Mercury/PBDE		
Polycyclic Aromatic Hydrocarbons - Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons	Melbourne	Mar 31, 2016	14 Day
Polychlorinated Biphenyls	Melbourne	Mar 29, 2016	28 Day
- Method: USEPA 8082 Polychlorinated Biphenyls Triazines	Melbourne	Mar 31, 2016	14 Day
- Method: USEPA 8270 NEPM 2013 Acid Herbicides	Melbourne	Mar 30, 2016	14 Day
- Method: MGT 530 NEPM 2013 Organochlorine Pesticides	Melbourne	Mar 29, 2016	14 Day
- Method: USEPA 8081 Organochlorine Pesticides NEPM 2013 Phenols	Melbourne	Mar 31, 2016	14 Day
- Method: USEPA 8270 Phenois Chromium (hexavalent) Method: API/A 3500 Cr. Havavalent Chromium (Futrantian USEPA3000)	Melbourne	Mar 30, 2016	28 Day
- Method: APHA 3500-Cr Hexavalent Chromium- (Extraction:- USEPA3060) NEPM 2013 Metals: Metals M12 Method: JTM MET 2000 by JCR OFS (hydrida JCR OFS) for Margury)	Melbourne	Mar 29, 2016	28 Day
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury) Conductivity (1:5 aqueous extract at 25°C)	Melbourne	Mar 30, 2016	7 Day
- Method: LTM-INO-4030 Ion Exchange Properties	Melbourne	Mar 31, 2016	
% Moisture	Melbourne	Mar 30, 2016	14 Day
- Method: LTM-GEN-7080 Moisture			
Heavy Metals	Melbourne	Mar 30, 2016	180 Day
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			

e.mail: EnviroSales@eurofins.com.au web: www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Received:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Prensa VIC

Address: 261-271 Wattletree Rd

Malvern VIC 3144

Project Name: DSI LILYDALE

Project ID: 19476

Phone: Fax:

Order No.:

Report #:

ABN - 50 005 085 521

494396 9508 0100

9508 0100 Priority: Contact Name:

Eurofins | mgt Client Manager: Sarah Gould

Madeleine Parris

Apr 5, 2016

5 Day

Mar 24, 2016 6:39 PM

	Sample Detail Laboratory where analysis is conducted Melbourne Laboratory - NATA Site # 1254 & 14271					HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Laboratory who	ere analysis is co	onducted																		
			271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydney Labora	tory - NATA Site	# 18217																		
	ratory - NATA Sit	te # 20794																		
External Labor	atory		1	1																
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
19476_R1	Mar 23, 2016		Water	M16-Ma25718							Х				Х					Х
19476_TB1	Mar 23, 2016		Water	M16-Ma25719						Х										
19476_FB1	Mar 23, 2016		Water	M16-Ma25720		Х														
19476_BH6_0. 2	Mar 22, 2016		Soil	M16-Ma25721	Х		Х		Х							Х	Х	Х	Х	Х
19476_BH6_0. 5	Mar 22, 2016		Soil	M16-Ma25722							Х	Х	Х	Х			Х			Х
19476_BH3_0. 3	Mar 22, 2016		Soil	M16-Ma25723							Х	Х	Х	Х			Х			х
19476_BH3_0.	Mar 22, 2016		Soil	M16-Ma25724	Х		Х	Х	Х							Х	Х	Х	Х	Х

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Received:

Priority:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

Fax:

web: www.eurofins.com.au

Prensa VIC **Company Name:**

Address: 261-271 Wattletree Rd

> Malvern VIC 3144

Project Name: DSI LILYDALE

Project ID: 19476 Order No.: 494396

Report #: Phone: 9508 0100

> **Contact Name:** Madeleine Parris

> > Eurofins | mgt Client Manager: Sarah Gould

Apr 5, 2016

5 Day

Mar 24, 2016 6:39 PM

		Sample Detail			Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	ge Cal	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Laboratory who	ere analysis is c	onducted																		
		Site # 1254 & 14	271		Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х
Sydney Labora	tory - NATA Site	e # 18217																		Ш
Brisbane Labor	ratory - NATA S	ite # 20794																		Ш
External Labor	atory	T																		
5																				
19476_BH4_0. 33	Mar 23, 2016		Soil	M16-Ma25725	Х		Х	Х	Х							Х	Χ	Х	Х	Х
19476_BH4_0. 55	Mar 23, 2016		Soil	M16-Ma25726							Х	Х	Х	Х			Χ			Х
19476_BH7_0. 2	Mar 23, 2016		Soil	M16-Ma25727							Х	Х	Х		Х		Χ			Х
19476_BH7_0. 5	Mar 23, 2016		Soil	M16-Ma25728	Х		Х		Х							Х	Х		Х	х
19476_BH2_0. 2	Mar 23, 2016		Soil	M16-Ma25729							Х	Х	Х	Х			X			х
19476_BH2_0.	Mar 23, 2016		Soil	M16-Ma25730							Х	Х	Х	Х			Х			х

Melbourne

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

Fax:

web : www.eurofins.com.au

Prensa VIC **Company Name:**

Address: 261-271 Wattletree Rd

> Malvern VIC 3144

Project Name: DSI LILYDALE

Project ID: 19476 Order No.: Received: Mar 24, 2016 6:39 PM

Report #: 494396 Due: Apr 5, 2016 Phone: 9508 0100 Priority: 5 Day

Contact Name: Madeleine Parris

																				Ει	urofins mgt Client Manager: Sarah Gould
		Sample Detail			Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons	
Laboratory who	ere analysis is c	onducted																			
Melbourne Lab	oratory - NATA	Site # 1254 & 14	1271		Х	Х	Χ	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	
Sydney Labora	tory - NATA Site	e # 18217																			
	ratory - NATA S	ite # 20794																			_
External Labor	atory		1																		4
5			<u> </u>						-										-		-
19476_BH5_0. 35	Mar 24, 2016		Soil	M16-Ma25731							Х	Х	Х		Х		Х			Х	
19476_BH5_0. 5	Mar 24, 2016		Soil	M16-Ma25732							Х	Х	Х	Х			Х			Х	
19476_BH10_0 .3	Mar 24, 2016		Soil	M16-Ma25733							Х	Х	Х		Х		Х			Х	
19476_BH10_0 .5	Mar 24, 2016		Soil	M16-Ma25734							Х	Х	Х	Х			Х			Х	
19476_QC1	Mar 23, 2016		Soil	M16-Ma25735		Χ															
19476_QC2	Mar 23, 2016		Soil	M16-Ma25736		Χ															_
19476_BH6_1.	Mar 22, 2016		Soil	M16-Ma25737		Х															

Report Number: 494396-S

Date Reported: Apr 06, 2016

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Client Manager: Sarah Gould

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

Fax:

web : www.eurofins.com.au

Prensa VIC **Company Name:**

Address: 261-271 Wattletree Rd

> Malvern VIC 3144

Project Name: DSI LILYDALE

Project ID: 19476 Order No.: Received: Mar 24, 2016 6:39 PM

Report #: 494396 Due: Apr 5, 2016 Phone: 9508 0100 Priority: 5 Day

Contact Name: Madeleine Parris

		Sample Detail			Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
	ere analysis is o oratory - NATA		271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	atory - NATA Site																			
	ratory - NATA S																			
External Labor																				
0																				Ш
19476_BH6_1. 3	Mar 22, 2016		Soil	M16-Ma25738		Х														
19476_BH6_1. 5	Mar 22, 2016		Soil	M16-Ma25739		Х														
19476_BH3_0.	Mar 22, 2016		Soil	M16-Ma25740		Х														
19476_BH3_1.	Mar 22, 2016		Soil	M16-Ma25741		Х														
19476_BH4_1.	Mar 23, 2016		Soil	M16-Ma25742		Х														
19476_BH7_1.	Mar 23, 2016		Soil	M16-Ma25743		Х														

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

web : www.eurofins.com.au

Prensa VIC **Company Name:**

Address: 261-271 Wattletree Rd

> Malvern VIC 3144

Project Name: DSI LILYDALE

Project ID: 19476 Order No.: Received: Mar 24, 2016 6:39 PM

Melbourne

Report #: 494396 Due: Apr 5, 2016 Phone: 9508 0100 Priority: 5 Day Fax:

Contact Name: Madeleine Parris

																			Ει	urofins mgt Client Manager: Sarah Gould
	Sample Detail			Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons	
ere analysis is c	onducted																			
oratory - NATA	Site # 1254 & 14	271		Х	Х	Х	Χ	X	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	te # 20794																			_
atory	T	T	1																	-
				-																-
Mar 23, 2016		Soil	M16-Ma25744		Х															
Mar 23, 2016		Soil	M16-Ma25745		Х															
Mar 23, 2016		Soil	M16-Ma25746		Х															
Mar 24, 2016		Soil	M16-Ma25747		Х															
Mar 24, 2016		Soil	M16-Ma25748		Х															
Mar 24, 2016		Soil	M16-Ma25749		Х															
	Mar 23, 2016 Mar 23, 2016 Mar 24, 2016	ere analysis is conducted poratory - NATA Site # 1254 & 14 atory - NATA Site # 18217 pratory - NATA Site # 20794 ratory - Mar 23, 2016 Mar 23, 2016 Mar 24, 2016 Mar 24, 2016 Mar 24, 2016	Mar 23, 2016 Mar 23, 2016 Mar 24, 2016 Mar 24, 2016 Soil Mar 24, 2016 Soil Mar 24, 2016 Soil Mar 24, 2016 Soil Soil Soil Soil Soil Soil Soil Soil Soil	Pere analysis is conducted Doratory - NATA Site # 1254 & 14271 Patory - NATA Site # 18217 Peratory - NATA Site # 20794 Peratory Mar 23, 2016 Mar 23, 2016 Soil M16-Ma25744 Mar 23, 2016 Soil M16-Ma25745 Mar 24, 2016 Soil M16-Ma25747 Mar 24, 2016 Soil M16-Ma25747	Sample Detail Contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the contain the c	Sample Detail Sample Detail Serie analysis is conducted Doratory - NATA Site # 1254 & 14271 X X Datory - NATA Site # 18217 Doratory - NATA Site # 20794 Paratory Mar 23, 2016 Soil M16-Ma25744 X Mar 23, 2016 Soil M16-Ma25746 X Mar 24, 2016 Soil M16-Ma25746 X Mar 24, 2016 Soil M16-Ma25747 X Mar 24, 2016 Soil M16-Ma25748 X Mar 24, 2016 Soil M16-Ma25748 X	Sample Detail Sample Detail Sample Detail Sample Detail Solution of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the pr	Sample Detail Sample Detail Sample Detail Sample Detail Series analysis is conducted Doratory - NATA Site # 1254 & 14271 X X X X Atory - NATA Site # 18217 Doratory - NATA Site # 20794 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - NATA Site # 1254 & 14271 Paratory - N	Sample Detail Soli	Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample	Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detai	Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Soli CaC2 extract) A X X X X X X X X X X X X X X X X X X	Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample	Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample	Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample	Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample	Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample	Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample	Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample Detail Sample	Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride Chloride

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Client Manager: Sarah Gould

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

web : www.eurofins.com.au

Prensa VIC **Company Name:**

Address: 261-271 Wattletree Rd

> Malvern VIC 3144

Project Name: DSI LILYDALE

Project ID: 19476

Date Reported: Apr 06, 2016

Order No.: Received: Mar 24, 2016 6:39 PM

Report #: 494396 Due: Apr 5, 2016 Phone: 9508 0100 Priority: 5 Day Fax:

Contact Name: Madeleine Parris

		Sample Detail			Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	ge Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Laboratory who	ere analysis is c	onducted																		
		Site # 1254 & 14	271		Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х
Sydney Labora	tory - NATA Site	# 18217																		
Brisbane Labor	ratory - NATA Si	te # 20794																		
External Labora	atory																			
0																				
19476_BH10_1 .0	Mar 24, 2016		Soil	M16-Ma25750		Х														

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (Eurofins | mgt uses NATA accredited in-house method LTM-GEN-7010)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
Volatile Organics					
1.1-Dichloroethane	mg/kg	< 0.05	0.05	Pass	
1.1-Dichloroethene	mg/kg	< 0.05	0.05	Pass	
1.1.1-Trichloroethane	mg/kg	< 0.05	0.05	Pass	
1.1.1.2-Tetrachloroethane	mg/kg	< 0.05	0.05	Pass	
1.1.2-Trichloroethane	mg/kg	< 0.05	0.05	Pass	
1.1.2.2-Tetrachloroethane	mg/kg	< 0.05	0.05	Pass	
1.2-Dibromoethane	mg/kg	< 0.05	0.05	Pass	
1.2-Dichlorobenzene	mg/kg	< 0.05	0.05	Pass	
1.2-Dichloroethane	mg/kg	< 0.05	0.05	Pass	
1.2-Dichloropropane	mg/kg	< 0.05	0.05	Pass	
1.2.3-Trichloropropane	mg/kg	< 0.05	0.05	Pass	
1.2.4-Trimethylbenzene	mg/kg	< 0.05	0.05	Pass	
1.3-Dichlorobenzene	mg/kg	< 0.05	0.05	Pass	
1.3-Dichloropropane	mg/kg	< 0.05	0.05	Pass	
1.3.5-Trimethylbenzene	mg/kg	< 0.05	0.05	Pass	
1.4-Dichlorobenzene	mg/kg	< 0.05	0.05	Pass	
2-Butanone (MEK)	mg/kg	< 0.05	0.05	Pass	
2-Propanone (Acetone)	mg/kg	< 0.05	0.05	Pass	
4-Chlorotoluene	mg/kg	< 0.05	0.05	Pass	
4-Methyl-2-pentanone (MIBK)	mg/kg	< 0.05	0.05	Pass	
Allyl chloride	mg/kg	< 0.05	0.05	Pass	
Benzene	mg/kg	< 0.1	0.1	Pass	
Bromobenzene	mg/kg	< 0.05	0.05	Pass	
Bromochloromethane	mg/kg	< 0.05	0.05	Pass	
Bromodichloromethane	mg/kg	< 0.05	0.05	Pass	
Bromoform	mg/kg	< 0.05	0.05	Pass	
Bromomethane	mg/kg	< 0.05	0.05	Pass	
Carbon disulfide	mg/kg	< 0.05	0.05	Pass	
Carbon Tetrachloride	mg/kg	< 0.05	0.05	Pass	
Chlorobenzene	mg/kg	< 0.05	0.05	Pass	
Chloroethane	mg/kg	< 0.05	0.05	Pass	
Chloroform	mg/kg	< 0.05	0.05	Pass	
Chloromethane	mg/kg	< 0.05	0.05	Pass	
cis-1.2-Dichloroethene	mg/kg	< 0.05	0.05	Pass	
cis-1.3-Dichloropropene	mg/kg	< 0.05	0.05	Pass	
Dibromochloromethane	mg/kg	< 0.05	0.05	Pass	
Dibromomethane	mg/kg	< 0.05	0.05	Pass	
Dichlorodifluoromethane	mg/kg	< 0.05	0.05	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
Iodomethane	mg/kg	< 0.05	0.05	Pass	
Isopropyl benzene (Cumene)	mg/kg	< 0.05	0.05	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.03	Pass	
Methylene Chloride	mg/kg	< 0.05	0.05	Pass	
o-Xylene	mg/kg	< 0.1	0.03	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Styrene	mg/kg	< 0.05	0.05	Pass	
Tetrachloroethene	mg/kg	< 0.05	0.05	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
trans-1.2-Dichloroethene	mg/kg	< 0.05	0.05	Pass	
trans-1.3-Dichloropropene	mg/kg	< 0.05	0.05	Pass	
Trichloroethene	mg/kg	< 0.05	0.05	Pass	
Trichlorofluoromethane	mg/kg	< 0.05	0.05	Pass	
Vinyl chloride	mg/kg	< 0.05	0.05	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	mg/kg	V 0.0	0.0	1 455	
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ections				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank	Ilig/kg	< 20	20	Fass	
			T	Π	
Polycyclic Aromatic Hydrocarbons	n	105	1 05	Dar -	
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan aulahata	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Organophosphorous Pesticides					
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl azinphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Naled	mg/kg	< 0.5	0.5	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank		1 0.2	0.2	1 400	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232 Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank	IIIg/kg	<u> </u>	0.1	Fass	
Triazines					
	ma/ka	102	0.2	Door	
Atrazine Method Plank	mg/kg	< 0.2	0.2	Pass	
Method Blank Total Beautypenhal Hydrogenham 2013 NEDM Fractions				I	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions		.50		Dana	
TRH > C10 - C16	mg/kg	< 50	50	Pass	
TRH > C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
NEPM 2013 Acid Herbicides		0.5	0.5	_	
Picloram*	mg/kg	< 0.5	0.5	Pass	
2.4-D	mg/kg	< 0.5	0.5	Pass	
2.4.5-T	mg/kg	< 0.5	0.5	Pass	
MCPA	mg/kg	< 0.5	0.5	Pass	
MCPB	mg/kg	< 0.5	0.5	Pass	
Mecoprop	mg/kg	< 0.5	0.5	Pass	
Method Blank					
NEPM 2013 PhenoIs					
2-Methylphenol (o-Cresol)	mg/kg	< 0.2	0.2	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4	0.4	Pass	
Pentachlorophenol	mg/kg	< 1	1.0	Pass	
Phenol	mg/kg	< 0.5	0.5	Pass	
Method Blank					

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chloride	mg/kg	< 5	5	Pass	
Chromium (hexavalent)	mg/kg	< 1	1	Pass	
Conductivity (1:5 aqueous extract at 25°C)	uS/cm	< 10	10	Pass	
Sulphate (as S)	mg/kg	< 10	10	Pass	
Method Blank				•	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Beryllium	mg/kg	< 2	2	Pass	
Boron	mg/kg	< 10	10	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Cobalt	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
		< 5	5	Pass	
Manganese	mg/kg	< 0.1	0.1	Pass	
Mercury	mg/kg				
Molybdenum	mg/kg	< 10	10	Pass	
Nickel Salarium	mg/kg	< 5	5	Pass	
Selenium	mg/kg	< 2	2	Pass	
Silver	mg/kg	< 5	5	Pass	
Tin	mg/kg	< 10	10	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank				T	
Ion Exchange Properties					
Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
LCS - % Recovery				T	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				1	
TRH C6-C9	%	109	70-130	Pass	
TRH C10-C14	%	106	70-130	Pass	
LCS - % Recovery				T	
Volatile Organics					
1.1-Dichloroethene	%	77	70-130	Pass	
1.1.1-Trichloroethane	%	97	70-130	Pass	
1.2-Dichlorobenzene	%	90	70-130	Pass	
1.2-Dichloroethane	%	89	70-130	Pass	
Benzene	%	110	70-130	Pass	
Ethylbenzene	%	108	70-130	Pass	
m&p-Xylenes	%	105	70-130	Pass	
Toluene	%	112	70-130	Pass	
Trichloroethene	%	82	70-130	Pass	
Xylenes - Total	%	104	70-130	Pass	
LCS - % Recovery				•	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	103	70-130	Pass	
TRH C6-C10	%	99	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	94	70-130	Pass	
Acenaphthylene	%	90	70-130	Pass	
Anthracene	%	93	70-130	Pass	
Benz(a)anthracene	%	89	70-130	Pass	
Benzo(a)pyrene	%	99	70-130	Pass	
Benzo(b&j)fluoranthene	%	79	70-130	Pass	
Benzo(g.h.i)perylene	%	96	70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(k)fluoranthene	%	90	70-130	Pass	
Chrysene	%	88	70-130	Pass	
Dibenz(a.h)anthracene	%	91	70-130	Pass	
Fluoranthene	%	84	70-130	Pass	
Fluorene	%	95	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	88	70-130	Pass	
Naphthalene	%	96	70-130	Pass	
Phenanthrene	%	95	70-130	Pass	
Pyrene	%	86	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
4.4'-DDD	%	78	70-130	Pass	
4.4'-DDE	%	80	70-130	Pass	
4.4'-DDT	%	93	70-130	Pass	
a-BHC	%	125	70-130	Pass	
Aldrin	%	115	70-130	Pass	
b-BHC	%	120	70-130	Pass	
d-BHC	%	123	70-130	Pass	
Dieldrin	%	87	70-130	Pass	
Endosulfan I	%	98	70-130	Pass	
Endosulfan II	%	105	70-130	Pass	
Endosulfan sulphate	%	123	70-130		
·	%			Pass	
Endrin Fodrin oldebude	%	94 107	70-130	Pass	
Endrin aldehyde			70-130	Pass	
Endrin ketone	%	120	70-130	Pass	
g-BHC (Lindane)	%	121	70-130	Pass	
Heptachlor	%	118	70-130	Pass	
Heptachlor epoxide	%	111	70-130	Pass	
Hexachlorobenzene	%	119	70-130	Pass	
Methoxychlor	%	96	70-130	Pass	
LCS - % Recovery		T T			
Organophosphorous Pesticides	-			_	
Diazinon	%	78	70-130	Pass	
Ethion	%	75	70-130	Pass	-
Fenitrothion	%	72	70-130	Pass	-
Methyl parathion	%	74	70-130	Pass	
Mevinphos	%	71	70-130	Pass	
LCS - % Recovery		1		T	
Polychlorinated Biphenyls	1				
Aroclor-1260	%	116	70-130	Pass	
LCS - % Recovery		, , , , , , , , , , , , , , , , , , ,			
Total Recoverable Hydrocarbons - 2013 NEPM Fra					
TRH >C10-C16	%	115	70-130	Pass	
LCS - % Recovery		1			
NEPM 2013 Acid Herbicides	1				
Picloram*	%	95	70-130	Pass	
2.4-D	%	119	70-130	Pass	
2.4.5-T	%	99	70-130	Pass	
MCPA	%	118	70-130	Pass	
MCPB	%	129	70-130	Pass	
Mecoprop	%	107	70-130	Pass	
LCS - % Recovery					
NEPM 2013 Phenois					
2-Methylphenol (o-Cresol)	%	93	30-130	Pass	

Tes	t		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
3&4-Methylphenol (m&p-Cresol)			%	89	30-130	Pass	
Pentachlorophenol			%	66	30-130	Pass	
Phenol			%	99	30-130	Pass	
LCS - % Recovery							
Chloride			%	95	70-130	Pass	
Chromium (hexavalent)			%	99	70-130	Pass	
Sulphate (as S)			%	95	70-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic			%	92	80-120	Pass	
Beryllium			%	105	80-120	Pass	
Boron			%	94	80-120	Pass	
Cadmium			%	99	80-120	Pass	
Chromium			%	104	80-120	Pass	
Cobalt			%	104	80-120	Pass	
Copper			%	105	80-120	Pass	
Lead			%	104	80-120	Pass	
Manganese			%	108	80-120	Pass	
Mercury			%	80	75-125	Pass	
Molybdenum			%	103	80-120	Pass	
Nickel			%	106	80-120	Pass	
Selenium			%	94	80-120	Pass	
Silver			%	85	80-120	Pass	
Tin			%	112	80-120	Pass	
Zinc			%	109	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Volatile Organics				Result 1			
1.1-Dichloroethene	M16-Ma26546	NCP	%	58	70-130	Fail	Q08
1.1.1-Trichloroethane	M16-Ma26546	NCP	%	83	70-130	Pass	
1.2-Dichlorobenzene	M16-Ma26546	NCP	%	84	70-130	Pass	
1.2-Dichloroethane	M16-Ma26546	NCP	%	76	70-130	Pass	
Benzene	M16-Ma26546	NCP	%	75	70-130	Pass	
Ethylbenzene	M16-Ma26546	NCP	%	77	70-130	Pass	
m&p-Xylenes	M16-Ma26546	NCP	%	79	70-130	Pass	
o-Xylene	M16-Ma26546	NCP	%	79	70-130	Pass	
Toluene	M16-Ma26546	NCP	%	76	70-130	Pass	
Trichloroethene	M16-Ma26546	NCP	%	73	70-130	Pass	
Xylenes - Total	M16-Ma26546	NCP	%	79	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbor	s - 2013 NEPM Fract	ions		Result 1			
Naphthalene	M16-Ma26546	NCP	%	70	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	M16-Ma25721	CP	%	89	70-130	Pass	
4.4'-DDT	M16-Ma25721	CP	%	98	70-130	Pass	
a-BHC	M16-Ma25721	СР	%	122	70-130	Pass	
Aldrin	M16-Ma25721	СР	%	125	70-130	Pass	
	M16-Ma25721	СР	%	126	70-130	Pass	
b-BHC	_ _		%	129	70-130	Pass	
d-BHC	M16-Ma25721	CP	/0	120	70 100		
	M16-Ma25721 M16-Ma25721	CP CP	%	97	70-130	Pass	
d-BHC	M16-Ma25721						
d-BHC Endosulfan I		СР	%	97	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	M16-Ma25721	CP	%	101	70-130	Pass	
Endrin ketone	M16-Ma25721	CP	%	123	70-130	Pass	
g-BHC (Lindane)	M16-Ma25721	CP	%	127	70-130	Pass	
Heptachlor	M16-Ma25721	CP	%	127	70-130	Pass	
Heptachlor epoxide	M16-Ma25721	CP	%	113	70-130	Pass	
Hexachlorobenzene	M16-Ma25721	CP	%	129	70-130	Pass	
Spike - % Recovery							
NEPM 2013 Acid Herbicides				Result 1			
Picloram*	S16-Ma25139	NCP	%	88	70-130	Pass	
2.4-D	S16-Ma25139	NCP	%	113	70-130	Pass	
MCPA	S16-Ma25139	NCP	%	101	70-130	Pass	
МСРВ	S16-Ma25139	NCP	%	85	70-130	Pass	
Spike - % Recovery							
				Result 1			
Chloride	M16-Ma26187	NCP	%	99	70-130	Pass	
Chromium (hexavalent)	M16-Ma25615	NCP	%	87	70-130	Pass	
Sulphate (as S)	M16-Ma22555	NCP	%	87	70-130	Pass	
Spike - % Recovery				T T		_	
Heavy Metals	Γ	1		Result 1			
Boron	M16-Ma26854	NCP	%	82	75-125	Pass	
Selenium	M16-Ma26854	NCP	%	78	75-125	Pass	
Spike - % Recovery				T T		1	
Total Recoverable Hydrocarbons -				Result 1		-	
TRH C6-C9	M16-Ap02036	NCP	%	82	70-130	Pass	
Spike - % Recovery				1		T	
Total Recoverable Hydrocarbons -				Result 1		-	
TRH C6-C10	M16-Ap02036	NCP	%	76	70-130	Pass	
Spike - % Recovery				1		T	
Organophosphorous Pesticides	1			Result 1		+	
Diazinon	M16-Ma25723	CP	%	72	70-130	Pass	
Ethion	M16-Ma25723	CP	%	77	70-130	Pass	
Fenitrothion	M16-Ma25723	CP	%	76	70-130	Pass	
Methyl parathion	M16-Ma25723	CP	%	81	70-130	Pass	
Mevinphos	M16-Ma25723	CP	%	75	70-130	Pass	
Spike - % Recovery						T	
Polycyclic Aromatic Hydrocarbons				Result 1		+	
Acenaphthene	M16-Ma25725	CP	%	97	70-130	Pass	
Acenaphthylene	M16-Ma25725	CP	%	101	70-130	Pass	
Anthracene	M16-Ma25725	CP	%	79	70-130	Pass	
Benz(a)anthracene	M16-Ma25725	CP	%	105	70-130	Pass	
Benzo(a)pyrene	M16-Ma25725	CP	%	78	70-130	Pass	
Benzo(b&j)fluoranthene	M16-Ma25725	CP	%	71	70-130	Pass	
Benzo(g.h.i)perylene	M16-Ma25725	CP	%	86	70-130	Pass	
Benzo(k)fluoranthene	M16-Ma25725	CP	%	96	70-130	Pass	
Chrysene Diberz/a blanthracena	M16-Ma25725	CP	%	96	70-130	Pass	
Dibenz(a.h)anthracene	M16-Ma25725	CP CP	%	82	70-130	Pass	
Fluoranthene Fluorene	M16-Ma25725 M16-Ma25725	CP	<u>%</u> %	96	70-130 70-130	Pass Pass	
	M16-Ma25725 M16-Ma25725	CP	<u>%</u> %	83	70-130	Pass	
Indeno(1.2.3-cd)pyrene	M16-Ma25725	CP	<u>%</u> %	94	70-130	Pass	
Naphthalene Phenanthrene		CP	<u>%</u> %	101	70-130	Pass	
	M16-Ma25725 M16-Ma25725	CP	<u>%</u> %	90	70-130	Pass	
Pyrene Spike - % Recovery	IVI 10-IVIAZ3/Z3	_ UF	70] 30]	1 10-130	_ rass	
JUBE - 76 RECOVERV							1

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptar Limits	nce Pass Limits	Qualifying Code
2-Methylphenol (o-Cresol)	M16-Ma25725	СР	%	105	30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	M16-Ma25725	СР	%	102	30-130	Pass	
Pentachlorophenol	M16-Ma25725	СР	%	83	30-130		
Phenol	M16-Ma25725	СР	%	110	30-130		
Spike - % Recovery	•	,				•	
Heavy Metals				Result 1			
Arsenic	M16-Ma25726	СР	%	81	75-125	Pass	
Beryllium	M16-Ma25726	СР	%	78	75-125	Pass	
Cadmium	M16-Ma25726	СР	%	76	75-125		
Chromium	M16-Ma25726	СР	%	80	75-125		
Cobalt	M16-Ma25726	СР	%	86	75-125	i	
Copper	M16-Ma25726	СР	%	92	75-125	i	
Lead	M16-Ma25726	СР	%	80	75-125	i	
Manganese	M16-Ma25726	CP	%	97	75-125	i	
Mercury	M16-Ma25726	CP	%	94	70-130	i	
Molybdenum	M16-Ma25726	CP	%	86	75-125	i	
Nickel	M16-Ma25726	CP	%	86	75-125	i	
Silver	M16-Ma25726	CP	%	85	75-125		
Tin	M16-Ma25726	CP	%	81	75-125		
Zinc	M16-Ma25726	CP	%	78	75-125		
Spike - % Recovery	WITO MAZOTZO	<u> </u>	70	10	10 120	1 400	
Total Recoverable Hydrocarbons	- 1000 NEDM Fract	ione		Result 1			
TRH C10-C14	M16-Ma25727	CP	%	104	70-130	Pass	
Spike - % Recovery	W10-Wa23727	Ci	/0	104	70-130	1 033	
Total Recoverable Hydrocarbons	- 2013 NEDM Fract	ione		Result 1			
TRH >C10-C16	M16-Ma25727	CP	%	113	70-130	Pass	
Spike - % Recovery	I WITO WAZOTZI	01	/0	110	70 130	1 433	
Organochlorine Pesticides				Result 1			
4.4'-DDD	M16-Ma25731	СР	%	78	70-130	Pass	
4.4'-DDE	M16-Ma25731	CP	%	99	70-130		
4.4'-DDT	M16-Ma25731	CP	<u> </u>	93	70-130	i	
a-BHC	M16-Ma25731	CP	<u> </u>	125	70-130	i	
Aldrin	M16-Ma25731	CP	<u> </u>	115	70-130		
b-BHC	M16-Ma25731	CP	<u> </u>	120	70-130		
d-BHC	M16-Ma25731	CP	%	123	70-130		
	M16-Ma25731	CP	%	88			
Dieldrin Endosulfan I		CP	%	98	70-130	i	
Endosulfan II	M16-Ma25731	CP	%	105	70-130	i	
Endosulfan sulphate	M16-Ma25731 M16-Ma25731	CP	%	123	70-130	i	
•		CP		1		i	
Endrin aldahuda	M16-Ma25731	CP	%	94	70-130	i	
Endrin aldehyde	M16-Ma25731	CP	%	107	70-130		
Endrin ketone	M16-Ma25731	1	%	120	70-130		
g-BHC (Lindane)	M16-Ma25731	CP CP	%	121	70-130 70-130		
Heptachlor	M16-Ma25731	1	%	118			
Heptachlor epoxide	M16-Ma25731	CP	%	111	70-130		
Hexachlorobenzene Methographer	M16-Ma25731	CP	%	119	70-130		
Methoxychlor	M16-Ma25731	CP	%	96	70-130	Pass	
Spike - % Recovery				Doguit 4			
Organophosphorous Pesticides	M46 M-05700	00	0/	Result 1	70.100	D	
Diazinon	M16-Ma25733	CP	%	127	70-130		
Ethion	M16-Ma25733	CP	%	117	70-130		
Fenitrothion	M16-Ma25733	CP	%	111	70-130		
Methyl parathion	M16-Ma25733	CP	%	91	70-130		
Mevinphos	M16-Ma25733	CP	%	118	70-130	Pass	1

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	s - 1999 NEPM Frac	ions		Result 1	Result 2	RPD			
TRH C6-C9	M16-Ma26545	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.1-Dichloroethene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.1.1-Trichloroethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.1.2-Trichloroethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.2-Dibromoethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.2-Dichlorobenzene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.2-Dichloroethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.2-Dichloropropane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.2.3-Trichloropropane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.2.4-Trimethylbenzene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.3-Dichlorobenzene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.3-Dichloropropane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.3.5-Trimethylbenzene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
1.4-Dichlorobenzene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
2-Butanone (MEK)	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
2-Propanone (Acetone)	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4-Chlorotoluene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Allyl chloride	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Benzene	M16-Ma26545	NCP	mg/kg	< 0.1	< 0.03	<1	30%	Pass	
Bromobenzene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Bromochloromethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Bromodichloromethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Bromoform	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Bromomethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Carbon disulfide	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Carbon Tetrachloride	M16-Ma26545	NCP			< 0.05	<1	30%	Pass	
			mg/kg	< 0.05				_	
Chlorobenzene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Chloroethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Chloroform	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Chloromethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
cis-1.2-Dichloroethene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
cis-1.3-Dichloropropene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dibromochloromethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dibromomethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dichlorodifluoromethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Ethylbenzene	M16-Ma26545	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
lodomethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Isopropyl benzene (Cumene)	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
m&p-Xylenes	M16-Ma26545	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	-
Methylene Chloride	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	-
o-Xylene	M16-Ma26545	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Styrene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Tetrachloroethene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toluene	M16-Ma26545	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
trans-1.2-Dichloroethene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
trans-1.3-Dichloropropene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate							1		
Volatile Organics		•		Result 1	Result 2	RPD			
Trichloroethene	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Trichlorofluoromethane	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Vinyl chloride	M16-Ma26545	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Xylenes - Total	M16-Ma26545	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M16-Ma26545	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M16-Ma26545	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
NEPM 2013 Acid Herbicides				Result 1	Result 2	RPD			
Picloram*	M16-Ma25691	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-D	M16-Ma25691	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-T	M16-Ma25691	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
MCPA	M16-Ma25691	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
МСРВ	M16-Ma25691	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Mecoprop	M16-Ma25691	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD		T	
Chloride	M16-Ma26186	NCP	mg/kg	51	49	4.4	30%	Pass	
Chromium (hexavalent)	M16-Ma25600	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Sulphate (as S)	M16-Ma22549	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Duplicate			19,9	1.0	1.0	7.	0070		
Polycyclic Aromatic Hydrocarbo	ons			Result 1	Result 2	RPD			
Acenaphthene	M16-Ma25722	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M16-Ma25722	CP		< 0.5	< 0.5	<1	30%	Pass	
		CP	mg/kg	< 0.5	< 0.5		30%		
Fluorene Indeno(1.2.3-cd)pyrene	M16-Ma25722 M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass Pass	
71.7		CP	mg/kg			<1			
Naphthalene	M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M16-Ma25722	L CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Daguit 4	Dec. 40	DDD			
Organophosphorous Pesticides		CD		Result 1	Result 2	RPD	200/	Dana	
Bolstar	M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl azinphos	M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	i .

M16-Ma25722 M16-Ma25722	CP	1	Result 1	Result 2	RPD		I	
M16-Ma25722	CP	1	Result 1	Decult 2 I				
M16-Ma25722	CP						_	
		mg/kg	< 0.2	< 0.2	<1	30%	Pass	
	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
			1	1				
		1	Result 1	Result 2	RPD			
M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
			,	, ,				
			Result 1	Result 2	RPD			
M16-Ma25722	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
M16-Ma25722	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
M16-Ma25722	CP	mg/kg	< 1	< 1	<1	30%	Pass	
M16-Ma25722	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
			Result 1	Result 2	RPD			
M16-Ma25724	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M16-Ma25724	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
			Result 1	Result 2	RPD			
M16-Ma25724	СР	ma/ka		< 0.2	<1	30%	Pass	
M16-Ma25724	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
M16-Ma25724	CP					30%		
	CP					30%		
	CP					30%		
			1					
			1					
			1					
			1					
			1					
			1					
			1					
			1					
			1					
			1					
	M16-Ma25722 M16-Ma25722 M16-Ma25722 M16-Ma25722 M16-Ma25722 M16-Ma25724	M16-Ma25722 CP M16-Ma25722 CP M16-Ma25722 CP M16-Ma25722 CP M16-Ma25722 CP M16-Ma25724 CP	M16-Ma25722 CP mg/kg M16-Ma25722 CP mg/kg M16-Ma25722 CP mg/kg M16-Ma25722 CP mg/kg M16-Ma25722 CP mg/kg M16-Ma25724 CP mg/kg	Result 1	Result 1 Result 2	Result 1 Result 2 RPD	Result 1 Result 2 RPD	Result 1 Result 2 RPD Result 3 Result 2 RPD Result 3 Result 3 Result 4 Re

Duplicate									
Organophosphorous Pesticides				Result 1	Result 2	RPD			
Tokuthion	M16-Ma25724	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	M16-Ma25724	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Triazines				Result 1	Result 2	RPD			
Atrazine	M16-Ma25724	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
NEPM 2013 Phenols				Result 1	Result 2	RPD			
2-Methylphenol (o-Cresol)	M16-Ma25724	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	M16-Ma25724	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Pentachlorophenol	M16-Ma25724	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Phenol	M16-Ma25724	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate			1				22.12		
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract						5			
at 25°C)	M16-Ma25725	CP	uS/cm	160	160	2.0	30%	Pass	
pH (1:5 Aqueous extract)	M16-Ma25725	CP	pH Units	8.4	8.6	pass	30%	Pass	
pH (units)(1:5 soil:CaCl2 extract)	M16-Ma25725	CP	pH Units	7.6	7.6	pass	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M16-Ma25725	СР	mg/kg	13	13	3.0	30%	Pass	
Beryllium	M16-Ma25725	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	M16-Ma25725	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	M16-Ma25725	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M16-Ma25725	CP	mg/kg	24	29	18	30%	Pass	
Cobalt	M16-Ma25725	СР	mg/kg	18	21	14	30%	Pass	
Copper	M16-Ma25725	СР	mg/kg	38	51	30	30%	Pass	
Lead	M16-Ma25725	CP	mg/kg	12	11	12	30%	Pass	
Manganese	M16-Ma25725	CP	mg/kg	640	620	4.0	30%	Pass	
Mercury	M16-Ma25725	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	M16-Ma25725	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Nickel	M16-Ma25725	CP	mg/kg	57	59	5.0	30%	Pass	
Selenium	M16-Ma25725	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M16-Ma25725	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Tin	M16-Ma25725	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Zinc	M16-Ma25725			39	45	14	30%	Pass	
	W10-Wa23723	UF	i ilig/kg] 39	45	14	30 /6	Fass	
Duplicate Total Passycrable Hydroserbans	1000 NEDM Front	iono		Popult 1	Popult 2	DDD			
Total Recoverable Hydrocarbons - TRH C10-C14	M16-Ma25726	CP	mg/kg	Result 1	Result 2 < 20	RPD <1	30%	Pass	
TRH C15-C28	M16-Ma25726	CP		< 20		<1	30%		
		CP	mg/kg	< 50	< 50	<1		Pass	
TRH C29-C36	M16-Ma25726	L CP	mg/kg	< 50	< 50	<u> </u>	30%	Pass	
Duplicate Total Passycrable Hydrosorbans	2012 NEDM Front	iono		Dogult 4	Booult 0	DDD			
Total Recoverable Hydrocarbons			m =/1	Result 1	Result 2	RPD	2004	Post	
TRH >C10-C16	M16-Ma25726	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M16-Ma25726	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M16-Ma25726	СР	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				D 114	D	DDD			
Heavy Metals	N40 N 0=====	25		Result 1	Result 2	RPD	0001	+	
Arsenic	M16-Ma25726	CP	mg/kg	17	16	4.0	30%	Pass	
Beryllium	M16-Ma25726	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	M16-Ma25726	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Cadmium	M16-Ma25726	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M16-Ma25726	CP	mg/kg	24	24	2.0	30%	Pass	
Cobalt	M16-Ma25726	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	M16-Ma25726	CP	mg/kg	< 5	< 5	<1	30%	Pass	

Duplicate					1				
Heavy Metals	1		1	Result 1	Result 2	RPD			
Lead	M16-Ma25726	CP	mg/kg	15	20	27	30%	Pass	
Manganese	M16-Ma25726	CP	mg/kg	14	15	5.0	30%	Pass	
Mercury	M16-Ma25726	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	M16-Ma25726	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Nickel	M16-Ma25726	CP	mg/kg	5.7	5.6	2.0	30%	Pass	
Selenium	M16-Ma25726	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M16-Ma25726	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Tin	M16-Ma25726	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Zinc	M16-Ma25726	CP	mg/kg	10	10.0	3.0	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Bifenthrin	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Chlordanes - Total	M16-Ma25728	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M16-Ma25728	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	M16-Ma25728	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M16-Ma25728	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M16-Ma25728	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M16-Ma25728	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M16-Ma25728	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate				<u> </u>					
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	M16-Ma25728	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	M16-Ma25728	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	M16-Ma25728	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	M16-Ma25728	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	M16-Ma25728	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	M16-Ma25728	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	M16-Ma25728	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	M16-Ma25728	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate			<u> </u>						
NEPM 2013 Organochlorine Pestic	ides			Result 1	Result 2	RPD			
Mirex	M16-Ma25728	СР	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
Duplicate	,		פייש.		,,				
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M16-Ma25730	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
AMIII	IVI 10-IVIAZ3130	UF	i iiig/kg	\ 0.05	\ 0.03		JU /0	1 000	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
b-BHC	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M16-Ma25730	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M16-Ma25730	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate Disk and				Docute 4	D 11 0	DDD	1	1	
Polychlorinated Biphenyls	M40 M-05700	CD		Result 1	Result 2	RPD	200/	Dana	
Aroclor-1016	M16-Ma25730	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	M16-Ma25730	CP CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232 Aroclor-1242	M16-Ma25730 M16-Ma25730	CP CP	mg/kg mg/kg	< 0.1	< 0.1 < 0.1	<1 <1	30%	Pass Pass	
Aroclor-1242 Aroclor-1248	M16-Ma25730	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1246 Aroclor-1254	M16-Ma25730	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	M16-Ma25730	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	M16-Ma25730	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	W10-Wa23730	0	i ilig/kg	<u> </u>	< 0.1		30 /0	1 033	
Duplicate				Result 1	Result 2	RPD		T	
% Moisture	M16-Ma25730	СР	%	10	10.0	4.0	30%	Pass	
Duplicate		<u> </u>	,,,				0070	1 400	
Polycyclic Aromatic Hydrocarbon	s			Result 1	Result 2	RPD		T	
Acenaphthene	M16-Ma25732	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M16-Ma25732	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M16-Ma25732	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M16-Ma25732	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M16-Ma25732	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M16-Ma25732	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M16-Ma25732	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M16-Ma25732	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M16-Ma25732	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M16-Ma25732	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M16-Ma25732	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M16-Ma25732	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M16-Ma25732	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M16-Ma25732	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M16-Ma25732	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M16-Ma25732	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organophosphorous Pesticides				Result 1	Result 2	RPD			
Bolstar	M16-Ma25732	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	M16-Ma25732	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
	1	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	M16-Ma25732	5	9,9						
Demeton-O Diazinon	M16-Ma25732 M16-Ma25732	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
				i	< 0.2 < 0.2	<1 <1	30% 30%	Pass Pass	

Duplicate									
Organophosphorous Pesticides				Result 1	Result 2	RPD			
Ethion	M16-Ma25732	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	M16-Ma25732	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	M16-Ma25732	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	M16-Ma25732	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	M16-Ma25732	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	M16-Ma25732	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl azinphos	M16-Ma25732	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	M16-Ma25732	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	M16-Ma25732	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Naled	M16-Ma25732	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phorate	M16-Ma25732	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	M16-Ma25732	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	M16-Ma25732	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	M16-Ma25732	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Triazines				Result 1	Result 2	RPD			
Atrazine	M16-Ma25732	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
NEPM 2013 Phenols				Result 1	Result 2	RPD			
2-Methylphenol (o-Cresol)	M16-Ma25732	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	M16-Ma25732	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Pentachlorophenol	M16-Ma25732	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Phenol	M16-Ma25732	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

<u> </u>	D : ::
Code	Description

The LORs have been raised due to matrix interference G01

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed

all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix

Authorised By

N02

Q08

Sarah Gould Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Senior Analyst-Inorganic (VIC) Huong Le Mele Singh Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins, Imgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mg be liable for consequential claims anges including, but not limited to, lost or ordition, among so find laure to meet deadlines and lost so routedoin arising from this report. This document shall be reported evece in full and art relates only to the interestset. Unless indicated otherwise, the tests were sindicated otherwise.

Prensa VIC 261-271 Wattletree Rd Malvern VIC 3144

Received Date

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: Madeleine Parris

Report494396-WProject nameDSI LILYDALEProject ID19476

Mar 24, 2016

Client Sample ID			19476_R1	19476_TB1
Sample Matrix			Water	Water
Eurofins mgt Sample No.			M16-Ma25718	M16-Ma25719
Date Sampled			Mar 23, 2016	Mar 23, 2016
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM				
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	-
TRH C15-C28	0.1	mg/L	< 0.1	-
TRH C29-C36	0.1	mg/L	< 0.1	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	, ,		
Naphthalene ^{N02}	0.01	mg/L	< 0.01	-
TRH C6-C10	0.02	mg/L	< 0.02	-
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	-
Polycyclic Aromatic Hydrocarbons	,			
Acenaphthene	0.001	mg/L	< 0.001	-
Acenaphthylene	0.001	mg/L	< 0.001	-
Anthracene	0.001	mg/L	< 0.001	-
Benz(a)anthracene	0.001	mg/L	< 0.001	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-
Chrysene	0.001	mg/L	< 0.001	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-
Fluoranthene	0.001	mg/L	< 0.001	-
Fluorene	0.001	mg/L	< 0.001	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-
Naphthalene	0.001	mg/L	< 0.001	-
Phenanthrene	0.001	mg/L	< 0.001	-
Pyrene	0.001	mg/L	< 0.001	-
Total PAH*	0.001	mg/L	< 0.001	-
2-Fluorobiphenyl (surr.)	1	%	58	-
p-Terphenyl-d14 (surr.)	1	%	78	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
TRH >C10-C16	0.05	mg/L	< 0.05	-
TRH >C16-C34	0.1	mg/L	< 0.1	-
TRH >C34-C40	0.1	mg/L	< 0.1	-
	<u> </u>	<u> </u>		
Chromium (hexavalent)	0.001	mg/L	< 0.001	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			19476_R1 Water M16-Ma25718 Mar 23, 2016	19476_TB1 Water M16-Ma25719 Mar 23, 2016
Test/Reference	LOR	Unit	, , , ,	,
Heavy Metals	•			
Arsenic	0.001	mg/L	< 0.001	-
Beryllium	0.001	mg/L	< 0.001	-
Boron	0.05	mg/L	< 0.05	-
Cadmium	0.0002	mg/L	< 0.0002	-
Cobalt	0.001	mg/L	< 0.001	-
Copper	0.001	mg/L	< 0.001	-
Lead	0.001	mg/L	< 0.001	-
Manganese	0.005	mg/L	< 0.005	-
Mercury	0.0001	mg/L	< 0.0001	-
Nickel	0.001	mg/L	< 0.001	-
Selenium	0.001	mg/L	< 0.001	-
Zinc	0.001	mg/L	< 0.001	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Testing Site Melbourne	Extracted Mar 29, 2016	Holding Time 7 Day
- Method: TRH C6-C36 - LTM-ORG-2010	Meibourne	Wai 29, 2016	7 Day
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 29, 2016	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 29, 2016	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010 NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Methyl Mercury/PRDF		
Polycyclic Aromatic Hydrocarbons	Melbourne	Mar 29, 2016	7 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			-
Chromium (hexavalent)	Melbourne	Apr 01, 2016	28 Day
- Method: Cr (VI) by MGT 1170A			
Heavy Metals	Melbourne	Mar 29, 2016	180 Day

⁻ Method: LTM-MET-3040 Metals in Waters by ICP-MS

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Prensa VIC

Address: 261-271 Wattletree Rd

> Malvern VIC 3144

Project Name: DSI LILYDALE

Project ID: 19476

Company Name:

Order No.: Report #:

494396

9508 0100

web : www.eurofins.com.au

Phone: Fax:

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

Contact Name: Madeleine Parris

Received:

Priority:

Due:

Eurofins | mgt Client Manager: Sarah Gould

Apr 5, 2016

5 Day

Mar 24, 2016 6:39 PM

Sample Detail Laboratory where analysis is conducted Melbourne Laboratory - NATA Site # 1254 & 14271						HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	ge Capaci	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
																				\vdash
			271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	atory - NATA Site																		ļ!	Ш
	ratory - NATA Sit	te # 20794																	<u> </u>	\sqcup
External Labor																			<u> </u>	\sqcup
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
19476_R1	Mar 23, 2016		Water	M16-Ma25718							Х				Х					Х
19476_TB1	Mar 23, 2016		Water	M16-Ma25719						Х										
19476_FB1	Mar 23, 2016		Water	M16-Ma25720		Х														
19476_BH6_0. 2	Mar 22, 2016		Soil	M16-Ma25721	Х		Х		Х							Х	Х	Х	Х	Х
19476_BH6_0. 5	Mar 22, 2016		Soil	M16-Ma25722							Х	Х	Х	Х			Х			Х
19476_BH3_0. 3	Mar 22, 2016		Soil	M16-Ma25723							Х	Х	Х	Х			Х			х
19476_BH3_0.	Mar 22, 2016		Soil	M16-Ma25724	Х		Х	Х	Х							Х	Х	Х	Х	Х

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Received:

Priority:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Mar 24, 2016 6:39 PM

Prensa VIC

Address: 261-271 Wattletree Rd

> Malvern VIC 3144

Project Name: DSI LILYDALE

Project ID: 19476

Company Name:

Order No.:

web : www.eurofins.com.au

Report #: 494396 Phone: 9508 0100

> **Contact Name:** Madeleine Parris

> > Eurofins | mgt Client Manager: Sarah Gould

Apr 5, 2016

5 Day

Sample Detail						HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	e Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Laboratory who	boratory where analysis is conducted																			
Melbourne Lab	oratory - NATA	Site # 1254 & 14	271		Х	Χ	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Χ	Х	Х	Х
	tory - NATA Site																		<u> </u>	
Brisbane Labor	ratory - NATA Si	te # 20794																	<u> </u>	
External Labor	atory	T	Ī																	
5																				
19476_BH4_0. 33	Mar 23, 2016		Soil	M16-Ma25725	Х		Х	Х	Х							Х	Χ	Х	Х	Х
19476_BH4_0. 55	Mar 23, 2016		Soil	M16-Ma25726							Х	Х	Х	Χ			Χ			Х
19476_BH7_0. 2	Mar 23, 2016		Soil	M16-Ma25727							Х	Х	Х		Х		Χ			Х
19476_BH7_0. 5	Mar 23, 2016		Soil	M16-Ma25728	Х		Х		Х							Х	X		Х	Х
19476_BH2_0. 2	Mar 23, 2016		Soil	M16-Ma25729							Х	Х	Х	Х			Х			Х
19476_BH2_0.	Mar 23, 2016		Soil	M16-Ma25730							Х	Х	Х	Х			Х			Х

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

Fax:

web : www.eurofins.com.au

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Address: 261-271 Wattletree Rd

> Malvern VIC 3144

Prensa VIC

Project Name: DSI LILYDALE

Project ID: 19476

Company Name:

Order No.: Received: Mar 24, 2016 6:39 PM

Report #: 494396 Due: Apr 5, 2016 Phone: 9508 0100 Priority: 5 Day

Contact Name: Madeleine Parris

																				Ει	urofins mgt Client Manager: Sarah Gould
		Sample Detail			Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons	
Laboratory who	ere analysis is c	onducted																			
Melbourne Lab	oratory - NATA	Site # 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Χ	Х	Χ	
Sydney Labora	tory - NATA Site	e # 18217																			_
	ratory - NATA Si	ite # 20794																			_
External Labora	atory	 																			-
5																					1
19476_BH5_0. 35	Mar 24, 2016		Soil	M16-Ma25731							Х	Х	Х		Х		Х			Х	
19476_BH5_0. 5	Mar 24, 2016		Soil	M16-Ma25732							Х	х	Х	Х			Х			Х	
19476_BH10_0 .3			Soil	M16-Ma25733							Х	Х	Х		Х		Х			Х	
19476_BH10_0 .5	Mar 24, 2016		Soil	M16-Ma25734							Х	Х	Х	Х			Х			Х	
19476_QC1	Mar 23, 2016		Soil	M16-Ma25735		Χ]
19476_QC2	Mar 23, 2016		Soil	M16-Ma25736		Χ															
19476_BH6_1.	Mar 22, 2016		Soil	M16-Ma25737		Х															

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

Fax:

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

web : www.eurofins.com.au

Prensa VIC **Company Name:**

Address: 261-271 Wattletree Rd

> Malvern VIC 3144

Project Name: DSI LILYDALE

Project ID: 19476 Order No.: Received: Mar 24, 2016 6:39 PM

Report #: 494396 Due: Apr 5, 2016 Phone: 9508 0100 Priority: 5 Day Fax:

Contact Name: Madeleine Parris

Total Recoverable Hydrocarbons NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding Cation Exchange Capacity Moisture Set Volatile Organics NEPM 2013 Metals : Metals M13 IWRG 621 Metals : Metals M12 Organophosphorous Pesticides Organochlorine Pesticides Polycyclic Aromatic Hydrocarbons TRH C6-C9 Sulphate (as S) pH (units)(1:5 soil:CaCl2 extract) pH (1:5 Aqueous extract) HOLD Chloride Chloride Detail	
Laboratory where analysis is conducted	
Melbourne Laboratory - NATA Site # 1254 & 14271 X	
Sydney Laboratory - NATA Site # 18217	
Brisbane Laboratory - NATA Site # 20794	
External Laboratory	
19476_BH6_1. Mar 22, 2016 Soil M16-Ma25738 X	
19476_BH6_1. Mar 22, 2016 Soil M16-Ma25739 X	
19476_BH3_0. Mar 22, 2016 Soil M16-Ma25740 X	
19476_BH3_1. Mar 22, 2016 Soil M16-Ma25741 X	
19476_BH4_1. Mar 23, 2016 Soil M16-Ma25742 X	
19476_BH7_1. Mar 23, 2016 Soil M16-Ma25743 X	

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Client Manager: Sarah Gould

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com.au

Fax:

web : www.eurofins.com.au

Prensa VIC **Company Name:**

Address: 261-271 Wattletree Rd

> Malvern VIC 3144

Project Name: DSI LILYDALE

Project ID: 19476 Order No.: Received: Mar 24, 2016 6:39 PM

Report #: 494396 Due: Apr 5, 2016 Phone: 9508 0100 Priority: 5 Day

Contact Name: Madeleine Parris

Sample Detail Laboratory where analysis is conducted			Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons		
•	Melbourne Laboratory - NATA Site # 1254 & 14271				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	atory - NATA Site																			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	ratory - NATA Si																			
External Labor	atory																			
0																				
19476_BH2_1. 0	Mar 23, 2016		Soil	M16-Ma25744		Х														
19476_BH2_1. 5	Mar 23, 2016		Soil	M16-Ma25745		Х														
19476_BH2_2. 0	Mar 23, 2016		Soil	M16-Ma25746		Х														
19476_BH5_1. 0	Mar 24, 2016		Soil	M16-Ma25747		Х														
19476_BH5_1. 5	Mar 24, 2016		Soil	M16-Ma25748		Х														
19476_BH5_2.	Mar 24, 2016		Soil	M16-Ma25749		Х														

DSI LILYDALE

Project Name:

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

Prensa VIC **Company Name:** Order No.: Received: Mar 24, 2016 6:39 PM Address: 261-271 Wattletree Rd Report #: 494396 Due: Apr 5, 2016

Malvern Phone: 9508 0100 Priority: 5 Day VIC 3144 Fax: **Contact Name:** Madeleine Parris

web: www.eurofins.com.au

Project ID: 19476 Eurofins | mgt Client Manager: Sarah Gould

		Sample Detail			Chloride	HOLD	pH (1:5 Aqueous extract)	pH (units)(1:5 soil:CaCl2 extract)	Sulphate (as S)	TRH C6-C9	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorous Pesticides	IWRG 621 Metals : Metals M12	NEPM 2013 Metals : Metals M13	Volatile Organics	Moisture Set	ge Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Total Recoverable Hydrocarbons
Laboratory whe	ere analysis is c	onducted																		
Melbourne Lab	oratory - NATA	Site # 1254 & 14	271		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ
Sydney Labora	Sydney Laboratory - NATA Site # 18217																			
Brisbane Laboratory - NATA Site # 20794																				
External Labora	External Laboratory																			
0																				
19476_BH10_1	Mar 24, 2016		Soil	M16-Ma25750		Х														

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water. $% \label{eq:case_eq} % \label{eq:case_eq}$

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (Eurofins | mgt uses NATA accredited in-house method LTM-GEN-7010)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance quidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data. Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank	IIIg/L	< 0.001	0.001	Fass	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions		l I			
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.03	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank	IIIg/L	< 0.1	0.1	Fass	
		.0.001	0.004	Pass	
Chromium (hexavalent)	mg/L	< 0.001	0.001	Fass	
Method Blank		T T	T	I	
Heavy Metals Arsenic		< 0.001	0.001	Pass	
	mg/L	i i			
Beryllium	mg/L	< 0.001	0.001	Pass	
Boron	mg/L	< 0.05	0.05	Pass	
Cabalt	mg/L	< 0.0002	0.0002	Pass	
Conner	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Manganese	mg/L	< 0.005	0.005	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Selenium	mg/L	< 0.001	0.001	Pass	-
Zinc	mg/L	< 0.001	0.001	Pass	
LCS - % Recovery		1			-
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				_	
TRH C6-C9	%	96	70-130	Pass	<u> </u>

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	88		70-130	Pass	
LCS - % Recovery				•				
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions						
Naphthalene			%	101		70-130	Pass	
TRH C6-C10			%	97		70-130	Pass	
LCS - % Recovery				•				
Polycyclic Aromatic Hydrocarbo	าร							
Acenaphthene			%	89		70-130	Pass	
Acenaphthylene			%	94		70-130	Pass	
Anthracene			%	88		70-130	Pass	
Benz(a)anthracene			%	91		70-130	Pass	
Benzo(a)pyrene			%	94		70-130	Pass	
Benzo(b&j)fluoranthene			%	99		70-130	Pass	
Benzo(g.h.i)perylene			%	74		70-130	Pass	
Benzo(k)fluoranthene			%	95		70-130	Pass	
Chrysene			%	92		70-130	Pass	
Dibenz(a.h)anthracene			%	81		70-130	Pass	
Fluoranthene			<u> </u>	97		70-130	Pass	
Fluorene			%	92		70-130	Pass	
Indeno(1.2.3-cd)pyrene			<u>%</u> %	77		70-130	Pass	
Naphthalene			<u>%</u> %	90	 	70-130	Pass	
-			<u>%</u> %					
Phenanthrene				90		70-130	Pass	
Pyrene			%	100		70-130	Pass	
LCS - % Recovery	0040 NEDM 5				1			
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions						
TRH >C10-C16			%	87		70-130	Pass	
LCS - % Recovery				T	I I	T	_	
Chromium (hexavalent) LCS - % Recovery			%	108		70-130	Pass	
				l	l I			
Heavy Metals			%	00		80-120	Dana	
Arsenic				96			Pass	
Beryllium			%	92		80-120	Pass	
Boron			%	96		80-120	Pass	
Cadmium			%	98		80-120	Pass	
Cobalt			%	97		80-120	Pass	
Copper			%	97		80-120	Pass	
Lead			%	98		80-120	Pass	
Manganese			%	96		80-120	Pass	
Mercury			%	103		75-125	Pass	
Nickel			%	97		80-120	Pass	
Selenium			%	99		80-120	Pass	
Zinc			%	95		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1				
TRH C10-C14	M16-Ma25849	NCP	%	112		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1				
TRH >C10-C16	M16-Ma25849	NCP	%	107		70-130	Pass	
Spike - % Recovery								
				Result 1				
Chromium (hexavalent)	M16-Ma29443	NCP	%	104		70-130	Pass	
Spike - % Recovery								

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Arsenic	M16-Ma23713	NCP	%	83			75-125	Pass	
Beryllium	M16-Ma23713	NCP	%	93			75-125	Pass	
Boron	M16-Ma22665	NCP	%	91			75-125	Pass	
Cadmium	M16-Ma23713	NCP	%	96			75-125	Pass	
Cobalt	M16-Ma23713	NCP	%	96			75-125	Pass	
Copper	M16-Ma23713	NCP	%	95			75-125	Pass	
Lead	M16-Ma23713	NCP	%	90			75-125	Pass	
Manganese	M16-Ma23713	NCP	%	93			75-125	Pass	
Mercury	M16-Ma23713	NCP	%	89			70-130	Pass	
Nickel	M16-Ma23713	NCP	%	94			75-125	Pass	
Selenium	M16-Ma23713	NCP	%	91			75-125	Pass	
Zinc	M16-Ma25618	NCP	%	103			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarb	ons - 1999 NEPM Frac	tions		Result 1	Result 2	RPD			
TRH C10-C14	S16-Ma22273	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S16-Ma22273	NCP	mg/L	0.2	0.2	<1	30%	Pass	
TRH C29-C36	S16-Ma22273	NCP	mg/L	0.1	0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarb	ons - 2013 NEPM Frac	tions		Result 1	Result 2	RPD			
TRH >C10-C16	S16-Ma22273	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S16-Ma22273	NCP	mg/L	0.3	0.3	<1	30%	Pass	
TRH >C34-C40	S16-Ma22273	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chromium (hexavalent)	M16-Ma25945	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M16-Ma23713	NCP	mg/L	0.26	0.27	4.0	30%	Pass	
Beryllium	M16-Ma23713	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Boron	M16-Ma25946	NCP	mg/L	0.05	0.12	83	30%	Fail	Q15
Cadmium	M16-Ma23713	NCP	mg/L	0.0040	0.0041	3.0	30%	Pass	
Cobalt	M16-Ma23713	NCP	mg/L	0.003	0.003	3.0	30%	Pass	
Copper	M16-Ma23713	NCP	mg/L	0.055	0.057	4.0	30%	Pass	
Lead	M16-Ma23713	NCP	mg/L	0.21	0.21	4.0	30%	Pass	
Manganese	M16-Ma23713	NCP	mg/L	0.065	0.065	1.0	30%	Pass	
Mercury	M16-Ma23713	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M16-Ma23713	NCP	mg/L	0.011	0.009	22	30%	Pass	
Selenium	M16-Ma23713	NCP	mg/L	0.51	0.50	3.0	30%	Pass	
Zinc	M16-Ma23713	NCP	mg/L	0.59	0.60	3.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

N02

Sarah Gould Analytical Services Manager Emily Rosenberg Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Huona Le Senior Analyst-Inorganic (VIC) Mele Singh Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins. Impt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential changes including, but not limited to, lost profits, damages for reliable to meet declarations and include additines and lost production arising from this report. This document shall be reported used except in full and retrietates only to the letters tested. Unless indicated otherwise, the tests were performed on the samples as received.

A division of Envirolab Group

Envirolab Services Pty Ltd - Melbourne
ABN 37 112 535 645 -02
1 Dalmore Drive, Scoresby, VIC 3179 Australia
Ph +613 9763 2500 Fax +613 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Prensa
Attention	Madeleine Parris

Sample Login Details	
Your Reference	19476 - 15 Anderson St, Lilydale, VIC 3140
Envirolab Reference	8189
Date Sample Received	30/03/2016
Date Instructions Received	30/03/2016
Date Results Expected to be Reported	06/04/2016

Sample Condition	•							
Samples received in appropriate condition for analysis	YES							
No. of Samples Provided	1 Soil							
Turnaround Time Requested	Standard							
Temperature on receipt (°C)	3.3C							
Cooling Method	Ice							
Sampling Date Provided	YES							

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Chris De Luca	Analisa Mathrick						
Phone: 03 9763 2500	Phone: 03 9763 2500						
Fax: 03 9763 2633	Fax: 03 9763 2633						
Email: cdeluca@envirolab.com.au	Email: amathrick@envirolab.com.au						

Sample and Testing Details on following page

A division of Envirolab Group

Envirolab Services Pty Ltd - Melbourne
ABN 37 112 535 645 -02
1 Dalmore Drive, Scoresby, VIC 3179 Australia
Ph +613 9763 2500 Fax +613 9763 2633
melbourne@envirolab.com.au
www.envirolab.com.au

Sample Id	vTRH(C6- C10)/BTEXN in Soil	TRH Soil C10-C40 NEPM	PAHs in Soil	13 metals in soil
19476_QC2	✓	✓	✓	✓

email: melbourne@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Melbourne | ABN 37 112 535 645 - 002

CERTIFICATE OF ANALYSIS

8189

Client:

Prensa

Po Box 2203 Wattletree rd LPO Malvern East VIC 3145

Attention: Madeleine Parris

Sample log in details:

Your Reference: 19476 - 15 Anderson St, Lilydale, VIC 3140

No. of samples: 1 Soil

Date samples received / completed instructions received 30/03/2016 / 30/03/2016

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 6/04/16 / 6/04/16

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Analisa Mathrick Laboratory Manager

Revision No:

R 00

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Envirolab Reference: 8189 Page 1 of 12

vTRH(C6-C10)/BTEXN in Soil			
Our Reference:	UNITS	8189-1	
Your Reference		19476_QC2	
Date Sampled		23/03/2016	
Type of sample		Soil	
Date extracted	-	31/03/2016	
Date analysed	-	31/03/2016	
vTRHC6 - C9	mg/kg	<25	
vTRHC6 - C10	mg/kg	<25	
TRHC6 - C10 less BTEX (F1)	mg/kg	<25	
Benzene	mg/kg	<0.2	
Toluene	mg/kg	<0.5	
Ethylbenzene	mg/kg	<1	
m+p-xylene	mg/kg	<2	
o-Xylene	mg/kg	<1	
naphthalene	mg/kg	<1	
Total +ve Xylenes	mg/kg	<1	
Surrogate aaa-Trifluorotoluene	%	83	

Envirolab Reference: 8189 Revision No: R 00

TRHSoil C10-C40 NEPM			
Our Reference:	UNITS	8189-1	
Your Reference		19476_QC2	
Date Sampled		23/03/2016	
Type of sample		Soil	
Date extracted	-	31/03/2016	
Date analysed	-	31/03/2016	
TRHC10 - C14	mg/kg	<50	
TRHC 15 - C28	mg/kg	<100	
TRHC29 - C36	mg/kg	<100	
Total +ve TRH (C10-C36)	mg/kg	<50	
TRH>C10-C16	mg/kg	<50	
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	
TRH>C16-C34	mg/kg	<100	
TRH>C34-C40	mg/kg	<100	
Total+veTRH(>C10-C40)	mg/kg	<50	
Surrogate o-Terphenyl	%	84	

Envirolab Reference: 8189

Revision No: R 00

PAHs in Soil			
Our Reference:	UNITS	8189-1	
Your Reference		19476_QC2	
Date Sampled		23/03/2016	
Type of sample		Soil	
Date extracted	-	31/03/2016	
Date analysed	-	31/03/2016	
Naphthalene	mg/kg	<0.1	
Acenaphthylene	mg/kg	<0.1	
Acenaphthene	mg/kg	<0.1	
Fluorene	mg/kg	<0.1	
Phenanthrene	mg/kg	<0.1	
Anthracene	mg/kg	<0.1	
Fluoranthene	mg/kg	<0.1	
Pyrene	mg/kg	<0.1	
Benzo(a)anthracene	mg/kg	<0.1	
Chrysene	mg/kg	<0.1	
Benzo(b,j&k)fluoranthene	mg/kg	<0.2	
Benzo(a)pyrene	mg/kg	<0.05	
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	
Dibenzo(a,h)anthracene	mg/kg	<0.1	
Benzo(g,h,i)perylene	mg/kg	<0.1	
Total +ve PAH's	mg/kg	<0.05	
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	<0.5	
Benzo(a)pyrene TEQ calc (Half)	mg/kg	<0.5	
Benzo(a)pyrene TEQ calc (PQL)	mg/kg	<0.5	
Surrogate p-Terphenyl-d14	%	94	

Envirolab Reference: 8189

Revision No: R 00

13 metals in soil			
Our Reference:	UNITS	8189-1	
Your Reference		19476_QC2	
Date Sampled		23/03/2016	
Type of sample		Soil	
Date digested	-	31/03/2016	
Date analysed	-	01/04/2016	
Arsenic	mg/kg	<4	
Beryllium	mg/kg	<1	
Barium	mg/kg	96	
Cadmium	mg/kg	<0.4	
Chromium	mg/kg	11	
Cobalt	mg/kg	2	
Copper	mg/kg	5	
Nickel	mg/kg	6	
Lead	mg/kg	31	
Manganese	mg/kg	91	
Mercury	mg/kg	<0.1	
Vanadium	mg/kg	33	
Zinc	mg/kg	30	

Envirolab Reference: 8189 Revision No: R 00

Moisture		
Our Reference:	UNITS	8189-1
Your Reference		19476_QC2
Date Sampled		23/03/2016
Type of sample		Soil
Date prepared	-	31/03/2016
Date analysed	-	01/04/2016
Moisture	%	13

Page 6 of 12 Envirolab Reference: 8189 Revision No: R 00

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:-
	'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<="" td="" teq="" teqs="" that="" the="" this="" to=""></pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql a="" above.<="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" td="" the=""></pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.

Envirolab Reference: 8189

Revision No: R 00

Client Reference: 19476 - 15 Anderson St, Lilydale, VIC 3140								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		,
Date extracted	-			31/03/2 016	[NT]	[NT] [NT]		31/03/2016
Date analysed	-			31/03/2 016	[NT]	[NT] [NT]		31/03/2016
vTRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	89%
vTRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-1	89%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-1	89%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-1	77%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	89%
m+p-xylene	mg/kg	2	Org-016	2	[NT]	[NT]	LCS-1	95%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-1	91%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	90	[NT]	[NT]	LCS-1	89%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
TRHSoil C10-C40 NEPM						Base II Duplicate II %RPD		,
Date extracted	-			31/03/2 016	[NT]	[NT] [NT] [NT] [NT]		31/03/2016
Date analysed	-			31/03/2 016	[NT]			31/03/2016
TRHC10 - C14	mg/kg	50	Org-003	<50	[NT]			90%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	84%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	80%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-1	90%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	84%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-1	80%
Surrogate o-Terphenyl	%		Org-003	74	[NT]	[NT]	LCS-1	104%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			31/03/2 016	[NT]	[NT]	LCS-1	31/03/2016
Date analysed	-			31/03/2 016	[NT]	[NT]	LCS-1	31/03/2016
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-1	104%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-1	106%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-1	104%
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-1	110%
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-1	116%
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-1	86%

Envirolab Reference: 8189

Revision No: R 00

Client Reference: 19476 - 15 Anderson St, Lilydale, VIC 3140								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil					Base II Duplicate II %RPD			
Benzo(b,j&k) fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]	[NT] [NT]		[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]	[NT]	LCS-1	130%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d ₁₄	%		Org-012	92	[NT]	[NT]	LCS-1	84%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
13 metals in soil						Base II Duplicate II %RPD		,
Date digested	-			31/03/2 016	[NT]	[NT]	LCS-1	31/03/2016
Date analysed	-			01/04/2 016	[NT]	[NT]	LCS-1	01/04/2016
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-1	94%
Beryllium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	110%
Barium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	102%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	[NT]	[NT]	LCS-1	99%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	98%
Cobalt	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	98%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	97%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	98%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	97%
Manganese	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	103%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-1	102%
Vanadium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	97%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-1	96%

Envirolab Reference: 8189 R 00 Revision No:

QUALITY CONTROL Moisture		UNITS	PQL	METHOD	Blank
	Date prepared	-			[NT]
	Date analysed	-			[NT]
	Moisture	%	0.1	Inorg-008	[NT]

Envirolab Reference: 8189 Page 10 of 12

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NR: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 8189 Page 11 of 12 Revision No: R 00

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batched of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Envirolab Reference: 8189 Page 12 of 12

Revision No: R 00

Appendix N: Geotechnical Report

GEOTECHNICAL INVESTIGATION REPORT

STAGE 1 GEOTECHNICAL INVESTIGATION REPORT

PROPOSED REDEVELOPMENT OF

YARRA RANGES COUNCIL MUNICIPAL OFFICES

15 ANDERSON STREET

LILYDALE VIC

PREPARED FOR

PRENSA PTY LTD

JOB NO: 4548-5-R (REVISION 1)

16 MAY 2016

DISTRIBUTION:

PRENSA PTY LTD

EXECUTIVE SUMARY

GeoAust was engaged by Prensa to conduct a geotechnical investigation for a new office addition extending to the north of the existing Yarra Ranges Council municipal office building at 15 Anderson Street, Lilydale. It was also required to assess subsurface conditions around the perimeter of the existing library building at the same site and provide comments on the cause(s) of the footing movement which has contributed to the structural distress within the building. Appropriate recommendations for suitable remedial measures, which will reduce future movements, have also been provided.

The Geological Survey of Victoria indicates the site to be located close to the contact between Quaternary age alluvial deposits and Devonian age rhyolite. The clays are typically moderately to highly reactive, that is they exhibit appreciable changes in volume when subjected to changes in moisture content. The depth to rhyolite can vary significantly over short lateral distances as was demonstrated by the boreholes, which indicated high to very strength rhyolite to be present at depths vary between 0.28 and 8.37 metres below the ground surface.

The presence of moisture softened and highly reactive clays at the subject site, together with the presence of numerous trees at, and adjacent to, the subject site, precludes the use of shallow footing arrangements founded on clay for the support of the proposed new office structure. The use of shallow footings founded on clay will result in poor performance of the proposed structure. It will be necessary to found all footings for the proposed structure on rhyolite rock at the base of any clay. At locations where the depth to the rhyolite exceeds approximately 1.5 metres below the finished ground surface it is anticipated that it will be more economical and practicable to suspend the structure on a series of bored piles which are socketed into the rhyolite. However, the construction of bored piles socketed into the rhyolite must take into account the high to very high strength of the rhyolite. The very high strength rhyolite will necessitate the use of a high capacity drilling rig equipped with a rock coring bucket and the rate of coring will be extremely slow.

The library building at the south end of the site is underlain by highly reactive clay soils, which undergo significant changes in volume upon changes in moisture content. Upon wetting the clays swell appreciably and conversely upon drying the clays shrink. The volumetric changes that have occurred at the subject site have exceeded those able to be accommodated by the subject structure, resulting in the observed distress at various locations throughout the structure.

Based on the results of the testing carried out the following factors are likely to have significantly influenced the performance of the footings providing support to the library building:

- The existing strip footings are inadequate in relation to the highly reactive clays underlying the site.
- It is understood that there has been a history of numerous pipes connecting to the subject building having leaked and/or ruptured at various times over the life of the structure. The presence of uncontrolled water ingress into the high plasticity clay will lead to appreciable heaving of the clay. The pressures exerted by heaving clay are in excess of those able to be accommodated by the structure.
- The numerous trees located within close proximity to the subject building have had an appreciable effect on the clay founding stratum. Individual trees located within 1.0 times their mature height of footings are recognised as being capable of causing settlement related damage to structures in high plasticity clays.

For trees in group plantings this distance extends up to 2.0 times the mature heights of the individual trees. The numerous small to large sized trees located immediately adjacent to the subject building are therefore well capable of having caused the damage observed within the structure.

If underpinning of the footings which provide support to the library building is to be avoided, the following items must be addressed in an effort to stabilise the moisture content regime within the clay founding stratum:

- All trees in the immediate vicinity of the subject building must be removed without delay. No additional trees should be planted at, or adjacent to, the subject site.
- All services connecting to the structure must be checked for leaks and blockages. Any leaking pipes, no
 matter how minor, must be repaired immediately. Failure to eliminate any concentrated sources of the
 moisture is anticipated to cause ongoing additional damage to the subject structure.
- The surface drainage around the perimeter of the structure must be checked to ensure that water is able to freely shed away from the structure to a legal point of discharge.

Upon carrying out the above remedial measures, the performance of the structure will need to be accurately monitored for at least 24 months. This will allow the moisture regime of the highly plasticity clays underlying the subject building to stabilise. If movements have significantly reduced and are considered acceptable, appropriate repairs may be made to the structure.

If it is not possible to implement one or more of the above remedial measure, or alternatively, if appreciable continuing movements are observed within the subject structure some 24 months after efforts have been made to stabilise the moisture content regime of the clay founding stratum, it will be necessary to underpin the subject structure to a stable founding stratum.

In considering underpinning as a means of stabilising footing movements within the subject building it must be recognised, that whilst underpinning of isolated problem areas will often stabilise the distressed portion of the structure being treated, it in itself may lead to some cracking of sections which are currently in relatively good repair. Underpinning should therefore be extensive rather than localised, in order to minimise future foundation related movements at transition points.

TABLE OF CONTENTS

1	INIF	RODUCTION	1
	1.1	COMMISSION]
	1.2	PROPOSED DEVELOPMENT]
	1.3	INVESTIGATION OBJECTIVES	2
	1.4	GEOLOGY	2
	1.5	GROUND WATER TABLE	
2		ESTIGATION METHODS	
_	2.1	FIELD INVESTIGATION	
			(
	2.1.1	In-situ Testing Temporary Cround Weter Monitoring Standnings	
	2.1.2 2.1.3	Temporary Ground Water Monitoring Standpipes	-
		Footing Exposure LABORATORY TESTING	
_	2.2		
3		ULTS OF INVESTIGATION	
	3.1	SITE DESCRIPTION	(
	3.2	SUBSURFACE CONDITIONS	10
	3.3	GROUND WATER	12
	3.4	LABORATORY TESTS	13
	3.5	EXISTING FOOTING	16
4	CON	MENTS AND RECOMMENDATIONS	17
	4.1	STAGE 1 REPORT	17
	4.2	SITE CLASSIFICATION	17
	4.3	EARTHQUAKE SITE CLASSIFICATION	18
	4.4	STRUCTURAL DISTRESS WITHIN EXISTING BUILDING	18
	4.4.1	Likely Causes of Structural Distress	18
	4.4.2	Remedial Measures	19
	4.4.3	Stabilisation of Moisture Content Regime	20
	4.4.4	Underpinning of Strip Footings	23
	4.5	NEW FOOTINGS FOR PROPOSED OFFICE ADDITION	21
	4.5.1	Pad and Strip Footings Founded on Rhyolite	22
	4.5.2	Bored Pile Footings	23
	4.5.3	Construction of Bored Piles	25
	4.6	EXCAVATION	26
	4.6.1	Excavation Conditions	20
	4.6.2	Temporary Batter Slopes	20
	4.6.3	Permanent Batter Slopes	27
	4.6.4	Site Trafficability During Construction	28
	4.7	PAVEMENTS AND FLOOR SLABS	28
	4.7.1	Performance of Pavements and Floor Slabs	28
	4.7.2	Ground Floor Slab for Proposed Office Addition	29 1 29
	4.7.3 4.7.4	External Pavements Constructed on a Bridging Layer of Structural Fil Subgrade Drainage and Moisture Control	3:
	4.7.5	Inspection of Subgrade	3:
	4.8	EARTHWORKS	31
	4.8.1	Suitability of In-situ Soils for Use as Structural Fill	33
	4.8.2	Structural Fill	33
	4.8.3	Scheduling of Earthworks	32
	4.9	CONSTRUCTION REQUIREMENTS	33
	4.9.1	Construction Adjacent to Excavations and Service Pipe Trenches	33
	4.9.2	Inspection of Subgrades and Footing Excavations	33
	4.9.3	Site Drainage and Soil Moisture Control Adjacent to Structures	33
	4.9.4	Articulation of Structures	34
	4.10	ADDITIONAL SITE TESTING	34
	4.11	REPORT LIMITATIONS	34

1 INTRODUCTION

1.1 COMMISSION

The geotechnical investigation was commissioned by Ms Christie Batiste of Prensa Pty Ltd. The scope of works for the geotechnical investigation was in accordance with our fee proposal with reference 4548-4-Q dated 10 March 2016.

1.2 PROPOSED DEVELOPMENT

Based on the information provided to GeoAust, it was understood that it is proposed by Yarra Ranges Council to construct a new office addition extending to the north of the existing municipal office building at 15 Anderson Street, Lilydale. The proposed addition is likely to be either a single level structure with an approximate plan area of 1800 square metres or a two storey structure with an approximate ground floor plan area of 3000 square metres. The proposed addition will not include any basement levels.

In the absence of any architectural and structural details regarding the proposed development the following has been assumed about the proposed development:

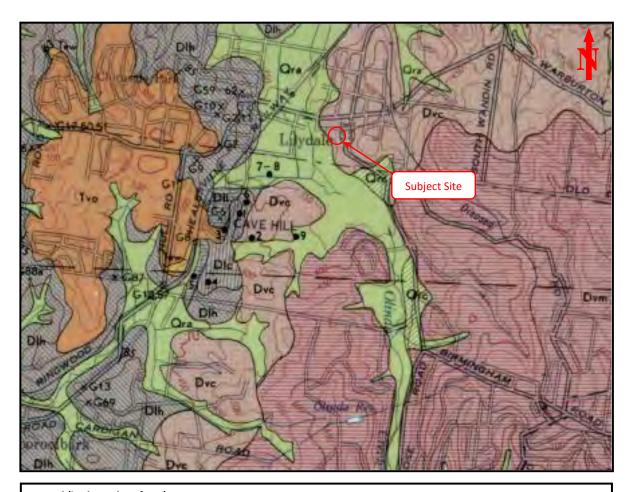
- Construction will be typical of reinforced concrete framed commercial structures.
- No unusual performance criteria will apply to the proposed structure.
- The preferred footing system for the proposed structure will comprise conventional pad and strip footings.

In addition to the proposed office addition extending to the north of the existing municipal office building, it was understood that the footings providing support to the existing municipal library at the same site have subsided, causing structural distress to the structure. As part of the geotechnical investigation it was also required to assess subsurface conditions around the perimeter of the existing library building and, based on the information obtained, provide comments on the cause(s) of the footing movement which has led to the current level of structural distress within the subject building. Appropriate recommendations for suitable remedial measures, which will reduce future movements, have also been provided.

1.3 <u>INVESTIGATION OBJECTIVES</u>

Based on our experience of geotechnical conditions in the general area of the subject site, in conjunction with our understanding of the proposed development, the objectives of the proposed geotechnical investigation were as follows:

- Investigate the subsurface soil and rock conditions at the subject site, relevant to the proposed development.
- Investigate the ground water conditions at the subject site, relevant to the proposed development.
- Classification of the site in accordance with Australian Standard AS 2870 2011, 'Residential Slabs and Footings'.
- Provide a sub-soil class and a hazard factor applicable to the site for earthquake design of the proposed structure in accordance with Australian Standard AS 1170.4 – 2007, 'Structural Design Actions, Part 4: Earthquake Actions in Australia'.
- Provide recommendations for alternative footing systems relevant to the proposed development,
 including design parameters and estimates of settlements for each of the footing systems.
- Provide recommendations for the design and construction of floor slabs and pavements relevant to the proposed development.
- Provide advice on construction issues relevant to the footings and pavements for the proposed development.
- Assess the subsurface soil conditions around the perimeter of the existing library building.
- Provide comments on the cause(s) of the footing movement which has led to the current level of structural distress within the existing library building.
- Provide appropriate recommendations for suitable remedial measures, which will reduce future movements within the existing library building.


1.4 GEOLOGY

Reference to the Geological Survey of Victoria, 1:63,360 series, Ringwood sheet indicates the site to be located close to the contact between the following geological units:

- Quaternary age alluvial deposits. The alluvial clays are typically moderately to highly reactive, that is, they exhibit appreciable volumetric changes when subjected to changes in moisture content. Generally, the alluvial deposits have limited capacity as a founding stratum.
- Devonian age rhyolite, referred locally to as 'Coldstream Rhyolite'. The residual clays associated with weathering of the rhyolite are typically moderately to highly reactive, that is they exhibit appreciable changes in volume when subjected to changes in moisture content. The depth to rhyolite can vary significantly over short lateral distances and the degree of weathering of the rhyolite varies widely, ranging from medium to high plasticity clay in its completely weathered state to very high strength rock in its slightly weathered state.

The Quaternary age alluvial deposits are underlain at relatively shallow depth by the Coldstream Rhyolite. The Coldstream Rhyolite extends to depths in excess of those likely to be influenced by the proposed development.

An extract from the Geological Survey of Victoria, 1:63,360 series, Ringwood sheet is provided in Figure 1.4.1.

Legend (in the order of age)

Qra: Quaternary age low level alluvial deposits.

Qrc: Quaternary age fan and slump deposits, hillwash.

Tvo: "Older Volcanics" Tertiary age olivine and titanaugide basalt: Dense, deeply weathered.

Tew: "Werribee Formation" Tertiary age Sub-Older Volcanics: Gravels, gravelly sands and clays, poorly sorted.

Dvm: "Mount Evelyn Rhyodacite" of "Mount Dandenong Volcanics Group" Devonian age rhyolites and rhyodacites.

Dvc: "Coldstream Rhyolite" of "Mount Dandenong Volcanics Group" Devonian age dense rhyolite.

DIc: "Cave Hill Sandstone" Devonian age quartz sandstone with horizons of sheared rounded quartz pebbles

DII: "Lilydale Limestone Member" of "Humevale Formation" Devonian age well bedded bioclastic limestone.

Dlh: "Humevale Formation" Devonian age sedimentary deposits: Massive to thin bedded siltstones and sandstones.

FIGURE 1.4.1: Extract from the Geological Survey of Victoria, 1:63,360 Series, Ringwood Sheet

1.5 **GROUND WATER TABLE**

Reference to Visualising Victoria's Groundwater website (http://maps.ubspatial.com.au/vvg) indicates the depth of the ground water table is at the boundary between, 5-10 metres below the ground surface and 10-20 metres below the ground surface at the subject site.

Immediately to the north of the subject site, the depth of the ground water table is indicated to be less than 5 metres below the ground surface.

Reference to Visualising Victoria's Groundwater website ($\frac{\text{http://maps.ubspatial.com.au/vvg}}{\text{volume}}$) indicates the depth of the ground water table to be 5-10 metres below the ground surface at the subject site.

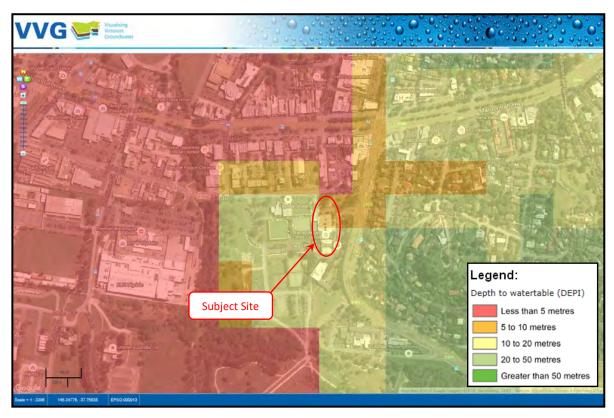


FIGURE 1.5.1: Screenshot from the Visualising Victoria's Groundwater Website.

2 INVESTIGATION METHODS

2.1 FIELD INVESTIGATION

Field investigation was completed under the direct supervision of a qualified Geotechnical Engineer from GeoAust on 22 - 24 and 30 March 2016 and included the following:

A total of ten boreholes were drilled at the subject site at the following locations:

- Five (5) boreholes were drilled to depths ranging between 2.56 and 11.23 metres below the existing ground surface within the plan area of the proposed office building addition at the north end of the site. The approximate locations of Boreholes 1 5 are indicated in the attached Figure 1.
- Five (5) boreholes were also drilled to depths ranging between 1.0 and 2.55 metres below the existing ground surface around the perimeter of the existing library building. The approximate locations of Boreholes 6 10 are also indicated in the attached Figure 1.

The presence of the existing building at the subject site precluded access with a drilling rig to parts of the site at the time of the site testing. Upon demolition and removal of the existing structure at the site, further site testing, comprising one additional borehole will need to be conducted at the south west corner of the plan area of the proposed office building addition to confirm the subsurface soil and rock conditions over the balance of the site.

Boreholes 1-5, 8 and 9 were drilled using a combination of a track mounted Comacchio MC405 rotary drilling rig and a truck mounted Comacchio MCT405 rotary drilling rig. The fill and residual soils were auger drilled and/or rotary wash bored to depths ranging between 1.0 and 9.03 metres below the existing ground surface. Boreholes 1-5 were extended into the underlying weathered rhyolite by way of continuous N.M.L.C diamond core drilling.

Due to restricted site access, Boreholes 6, 7 and 10 were drilled using portable hand auger equipment.

The logs of the boreholes were prepared in accordance with Australian Standard AS 1726 – 1993 'Geotechnical Site Investigations'. Definitions of the logging terms and symbols used are provided in Appendix A and the logs of the boreholes are provided in Appendix B.

Photographs of the rhyolite core recovered from Boreholes 1 – 5 are provided in Appendix C.

2.1.1 <u>In-situ Testing</u>

Testing was carried out in accordance with the relevant test procedures in Australian Standard AS 1289, 'Methods of Testing Soils for Engineering Purposes' and included the following:

- Vane shear strength testing of cohesive soils.
- Standard penetration testing.

Test results are included on the logs of the boreholes.

2.1.2 <u>Temporary Ground Water Monitoring Standpipes</u>

Two temporary PVC ground water monitoring standpipes with a diameter of 50 millimetres were installed in Boreholes 3 and 5 upon completion of drilling. The details of the standpipe construction are provided in Table 2.1.3.1.

TABLE 2.1.3.1: Details of Ground Water Monitoring Standpipes Installed in Boreholes 3 and 5

Test Location	Depth of Standpipe (metre)	Standpipe Type	Depth Interval of Screen (metre)	Depth Interval of Filter Pack (metre)	Depth Interval of Bentonite Seal (metre)
Borehole 3	6.1	Hand slotted 50mm diameter Class 9 PVC	3.1 – 6.1	1.5 – 6.1	0.0 – 1.5
Borehole 5	11.23	Hand slotted 50mm diameter Class 9 PVC	5.23 – 11.23	1.5 – 11.23	0.0 – 1.5

The standing water levels measured within the standpipes are provided in Section 3.3.

2.1.3 Footing Exposure

The footing which provides support to the perimeter wall of the existing library building at the subject site was exposed by manual excavation at Test Location 7. The approximate location of the footing exposure is indicated in the attached Figure 1 and the details of the footing, as exposed, are provided in Section 3.5.

2.2 <u>LABORATORY TESTING</u>

Laboratory testing was undertaken by the laboratory of Civil Geotechnical Services Pty Ltd. The laboratory is accredited by the National Association of Testing Authorities (NATA).

Testing was carried out in accordance with Australian Standard AS 1289, 'Methods of Testing Soil for Engineering Purposes' and included:

- 14 No. moisture content tests
- 4 No. Atterberg Limits tests
- 2 No. 4 day soaked CBR tests

The moisture content tests were performed on the following disturbed samples:

- Borehole 6, 0.4 0.5, 0.9 1.0, 1.4 1.5, 1.9 2.0 and 2.4 2.5 metres.
- Borehole 7, 0.4 0.5, 0.9 1.0, 1.4 1.5, 1.9 2.0 and 2.4 2.5 metres.
- Borehole 10, 1.1-1.2, 1.4-1.5, 1.9-2.0 and 2.4-2.5 metres.

The Atterberg Limits tests were performed on the following disturbed samples of native clay:

- Borehole 5 1.5 2.0 metres
- Borehole 6, 1.4 1.5 metres
- Borehole 6, 1.9 2.0 metres
- Borehole 7, 1.5 1.6 metres

The soaked CBR tests were performed on composite samples of native clay. The composite samples were formed using the following disturbed samples of native clay:

• Composite Sample A: Borehole 1, 0.38 – 1.2 metres

Borehole 2, 0.9 - 1.6 metres

Borehole 3, 0.4 - 1.2 metres

• Composite Sample B: Borehole 4, 0.45 – 1.1 metres

Borehole 5, 0.4 - 1.5 metres

Borehole 6, 1.5 - 1.9 metres

The CBR specimens were remoulded to 98% of the Standard maximum dry density ratio in accordance with Australian Standard AS 1289 5.1.1.

The results of the laboratory tests are provided in Appendix D and are summarised in Section 3.4.

In addition to the testing completed by Civil Geotechnical Services Pty Ltd, point load strength index testing was carried out by GeoAust on the core samples of rhyolite recovered from Boreholes 1-3. The results of the point load strength index testing are also presented in Section 3.4.

3 RESULTS OF INVESTIGATION

3.1 SITE DESCRIPTION

The following site features were noted at the time of the field investigation:

- The site was located on a gently to moderately sloping south west facing hillside.
- The site fronted Anderson Street to the east and Hardy Street to the north.
- There was a bowling club to the west of the subject site.
- The site was occupied by an existing one and two storey building of masonry construction, which appeared to have been constructed in stages over several decades. The existing building included a lower ground floor level beneath part of the building. It was understood that it is proposed to demolish the north end of the existing structure to make way for the proposed new addition extending to the north side of the existing building.
- An appreciable site cut, with an estimated maximum depth of approximately 2.0 metres, had been carried out to accommodate the lower ground floor level.
- Based on a cursory external and internal inspection of the subject building it was noted that
 parts of the existing structure were in fair to poor condition, with minor to moderate cracking of
 walls, resulting from differential settlement of the footings that provide support to the structure.
- Based on information provided to GeoAust, it was understood that there has been a history of
 numerous pipes connecting to the subject building having leaked and or ruptured at various times
 over the life of the subject structure. Inspection of the subfloor space behind the lower ground
 floor area indicted the presence of a broken pipe which had previously discharged a substantial
 volume of water over the face of the site cut causing appreciable erosion of the soil profile.
- A short distance to the north of the existing municipal office building there was small single storey freestanding brick building, which was being used as a call centre. It was understood that it is proposed to demolish the building to make way for the proposed new addition extending to the north side of the existing municipal building.
- The buildings at the subject site were surrounded by areas of light duty concrete paving, areas
 of asphaltic concrete paving, areas of lawn and garden beds.
- There were numerous small to very large sized trees scattered at the subject site, many of them located with close proximity to the buildings at the site. The Nearmap aerial image of the site (www.nearmap.com) taken on 5 February 2016, which has been reproduced in the attached Figure 1, shows the locations and canopy sizes of the trees at, and adjacent to, the subject site.

3.2 **SUBSURFACE CONDITIONS**

The logs of Boreholes 1 - 10 are provided in Appendix B. The subsurface conditions encountered within the boreholes are summarised in Table 3.2.1.

TABLE 3.2.1: Summary of Soil and Rock Profile Encountered in Boreholes 1 – 10

Borehole Number	Depth of Existing Pavement (metre)	Depth of Fill (metre)	Depth of Silt (metre)	Depth of Clay (metre)	Depth of Weathered Rhyolite (metre)
1	0.0 – 0.025	0.025 – 0.6	Nil Present	0.6 – 5.5	5.5 – 9.07+
2	Nil Present	0.0 – 0.9	Nil Present	0.9 – 5.7	5.7 – 8.55+
3	0.0 – 0.36	Nil Present	Nil Present	0.36 – 1.25	1.25 – 6.1+
4	0.0 – 0.3	Nil Present	0.3 – 0.45	0.45 – 1.25	1.25 – 2.56+
5	0.0 – 0.05	0.05 – 0.4	Nil Present	0.4 – 8.7	8.7 – 11.23+
6	Nil Present	0.0 – 1.1	1.1 – 1.4	1.4 – 2.5+	Not Encountered
7	Nil Present	0.0 – 1.15	1.15 – 1.5	15 – 2.55+	Not Encountered
8	0.0 – 0.28	Nil Present	Nil Present	Nil Present	0.28 - 1.0+*
9	0.0 – 0.18	0.18 – 0.5	0.5 – 0.65	0.65 – 1.1	1.1 – 1.5+
10	Nil Present	0.0 – 0.4	0.4 – 1.1	1.1 – 2.5+	Not Encountered

^{*} Denotes effective auger refusal on high strength rhyolite with tungsten carbide spiral drill bit.

A brief description of the soil and rock layers encountered within the boreholes is given below:

EXISTING PAVEMENT: The existing pavement typically comprised a 20 - 80 millimetre thick layer of asphaltic concrete underlain by fine to coarse grained crushed rock which appeared to be well compacted. However, at the locations of Boreholes 1 and 5 there was no crushed rock underlying the layer of asphaltic concrete.

FILL: The fill comprised a mixture of fine to medium grained silty sand and low to medium plasticity silt and clay which contained varying quantities of fine to coarse grained sand and gravel. At the location of Borehole 1, the fill included cobbles at depths in excess of approximately 0.5 metres below the existing ground surface.

SILT TOPSOIL: The clayey silt was part of the original topsoil layer at the site. The silt was of low to medium plasticity and predominantly of very stiff to hard consistency. However, in Borehole 4, the clayey silt had been softened by moisture ingress to firm to stiff consistency.

The silt was assessed to be of extremely poor quality from an engineering perspective, in that it is prone to significant loss of strength upon moisture ingress. The silt will be completely unworkable upon saturation.

CLAY: The clay was of medium to high plasticity, meaning that it will be subject to significant volumetric changes upon changes in moisture content. Upon moisture ingress the clay will swell and conversely, upon drying out the clay will shrink.

The clay was generally of very stiff to hard consistency. However, in Boreholes 1, 4 and 5, the clay at shallow depths had been softened by moisture ingress to stiff consistency, as noted on the logs of the boreholes. At depths in excess of those softened by moisture ingress, the clay was of very stiff to hard consistency.

WEATHERED RHYOLITE: The rhyolite was predominantly distinctly weathered and of high to very high rock strength.

The rhyolite was fine grained and highly to moderately fractured with fragmented zones. The fractures were smooth, planar to undular, clean and stained by iron oxide. Some of the fractures were infilled with clay seams of up to 150 millimetres thick, as noted on the logs of the boreholes.

Defect spacings were variable within the rhyolite with rock quality designations (RQD) varying between 0 and 100%. A summary of RQD values for rhyolite in individual boreholes is provided in Table 3.2.2.

TABLE 3.2.2: Summary of Rock Quality Designation Values for Rhyolite in Boreholes 1 – 5

Borehole Number	Minimum RQD Value (%)	Maximum RQD Value (%)	Average RQD Value (%)
Borehole 1	0	100	51
Borehole 2	0	72	46
Borehole 3	0	0	0
Borehole 4	0	0	0
Borehole 5	0	0	0

A number of core losses occurred within the rhyolite during drilling. The losses are likely to have occurred within zones of extremely weathered rhyolite, which was of extremely low rock strength and/or residual clay.

It must be noted that the depth to rhyolite and the weathering properties of the rhyolite can vary significantly over short lateral distances. It is unlikely that the boreholes drilled at the site have intersected either the minimum or maximum depth to rhyolite at the subject site. Similarly, it is unlikely that the boreholes have encountered the extremes in weathering and rock strength of the rhyolite underlying the site.

3.3 **GROUND WATER**

Ground water seepage was not intersected during auger drilling of Boreholes 1-10 or observed a short time after completion of auger drilling. Auger drilling within Boreholes 1-5 extended to a maximum depth of 6.07 metres below the existing ground surface. The introduction of water for rotary wash boring and NMLC diamond core drilling negated any further meaningful observation of ground water seepage during drilling below the augered depths.

Two temporary PVC ground water monitoring standpipes with a diameter of 50 millimetres were installed in Boreholes 3 and 5 upon completion of drilling. The construction details of the ground water monitoring standpipes are provided in Section 2.1.3.

The standing ground water levels measured within the temporary ground water monitoring standpipes installed in Boreholes 3 and 5 are provided in Table 3.3.1.

TABLE 3.3.1: Standing Water Levels Measured within the Standpipes Installed in Boreholes 3 and 5

Test Location	Date of Reading	Depth of Standing Water Level Below Ground Surface (metre)	
Borehole 3	18 April 2016	1.3	
Borehole 5	18 April 2016	7.58	

The standing water level measured within the standpipe installed in Borehole 3 is considerably shallower than anticipated. The reason for the elevated standing water level within Borehole 3 has not been able to be ascertained as part of the site testing which has been completed to date. However, it may possibly be as a consequence of one or more leaking underground pipes at, and/or adjacent to, the subject site.

Based on our experience of conditions in the general area, the standing water level recorded within the standpipe installed in Borehole 3 is anticipated to correspond to the regional ground water table at the subject site.

Whilst not encountered at the time of the site investigation, it should be noted that ephemeral flows of perched ground water seepage may develop within the fill and near surface silt overlying the less permeable clay following periods of wet weather, particularly during the winter and spring months when rainfall rates are typically high and evaporation levels are low. The fill and near surface native soils are anticipated to be unstable and completely unworkable when saturated.

3.4 LABORATORY TESTS

The laboratory test results are given in Appendix D of this report. A summary of the test results is provided in Figure 3.4.1 and Tables 3.4.1 and 3.4.2.

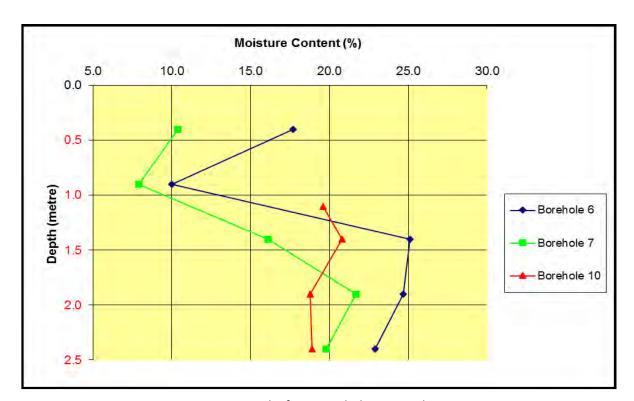


FIGURE 3.4.1: Moisture Content Test Results from Boreholes 6, 7 and 10

The moisture content tests indicate variable moisture content levels within the clay profile underlying the subject site both laterally between the boreholes and vertically within each of the boreholes.

By comparing the moisture contents of the native clay samples in Borehole 6 with those of Boreholes 7 and 10, it can be seen that the moisture content values in Borehole 6 are appreciably higher than the corresponding moisture contents in Boreholes 7 and 10. Even at a depth of 2.4 metres below the existing ground surface the moisture content in Borehole 6 is 4.0% higher than the corresponding moisture content in Borehole 10. Given the proximity of the tree to the location of Borehole 6 it would be expected that the moisture contents in Borehole 6 should be appreciably lower than the moisture contents in Borehole 10. The elevated moisture contents in Borehole 6 are indicative of a long term source of moisture (leaking pipe) in the vicinity of Borehole 6 that has led to deep seated moisture ingress of the residual clay profile.

A summary of the Atterberg limits test results is provided in Table 3.4.1.

TABLE 3.4.1: Summary of Atterberg Limits Test Results.

Borehole	Sample Depth	Material Type	LL	PL	PI	LS
	(m)		(%)	(%)	(%)	(%)
5	1.5 – 2.0	Native Clay	52	19	33	12.0
6	1.4 – 1.5	Native Clay	78	23	55	18.0
6	1.9 – 2.0	Native Clay	81	23	58	20.0
7	1.5 – 1.6	Native Clay	56	20	36	15.5

The results of the Atterberg Limit tests plot in the region of inorganic clay of high plasticity on the Unified Soil Classification System Plasticity Chart and are consistent with experience of conditions in the general area.

The results of the Atterberg Limit tests confirm that the clays underlying the subject site will experience significant changes in volume when subjected to changes in moisture content. Upon wetting the clay swells and conversely upon drying the clay shrinks.

In considering the results of both the moisture content tests and the Atterberg limits test results it is apparent that the external factors, which have led to appreciable deep seated moisture content variations within the high plasticity residual clays underlying the subject site (leaking pipes and trees), have had an appreciable effect on the clay founding stratum. The variations in the moisture content of the clay founding stratum have led to appreciable volumetric changes within the clay founding stratum, which in turn has resulted in differential settlements between those parts of the subject building where the footings are founded on clay and those parts where the footings are founded on weathered rhyolite at the base of the site cut.

A summary of the soaked CBR test results is provided in Table 3.4.2.

TABLE 3.4.2: Summary of Soaked CBR Test Results

Sample ID	Material Type	MDD	ОМС	Swell after 96 hour soak period	CBR
		(t/m³)	(%)	(%)	(%)
Composite Sample A	Native Clay	1.46	29.0	2.0	2.5
Composite Sample B	Native Clay	1.50	26.5	3.0	2.0

The laboratory soaked CBR tests completed on the samples of clay, which were compacted to 98% Standard compaction, produced low values of 2.0 and 2.5% and confirm the need for appropriate care to be taken in the design and construction of the proposed pavements at the subject site. Subgrade improvement is generally considered necessary to ensure satisfactory performance of pavements for soaked CBR values less than 3.0%.

In considering the results of the soaked CBRs it should be noted that the clay samples swelled by as much as 3.0% during the 96 hour soak period. This confirms the high plasticity of the clays underlying the subject site.

In addition to the testing completed by Civil Geotechnical Services Pty Ltd, point load strength index testing was carried out by GeoAust on the core samples of rhyolite recovered from Boreholes 1-3. The results of the point load strength index testing are summarised in Table 3.4.3.

Table 3.4.3: Summary of Point Load Strength Index Test Results.

Borehole Number	Sample Depth (metre)	Material Type	Is(50)	Rock Strength
1	6.0	Rhyolite	1.84	Н
1	6.35	Rhyolite	2.17	Н
1	7.2	Rhyolite	2.71	Н
1	8.0	Rhyolite	3.14	VH
1	8.4	Rhyolite	6.92	VH
2	6.3	Rhyolite	0.75	M
2	6.7	Rhyolite	0.85	М
2	7.05	Rhyolite	7.44	VH
2	8.2	Rhyolite	3.64	VH
3	2.56	Rhyolite	1.63	Н
3	4.43	Rhyolite	0.45	М
3	4.67	Rhyolite	4.28	VH
3	5.4	Rhyolite	5.03	VH

3.5 **EXISTING FOOTING**

Figure 3.5.1 provides a summary of the footing geometry and founding conditions of the footing which provides support to the perimeter wall of the existing library building at the subject site, as exposed at Test Location 7.

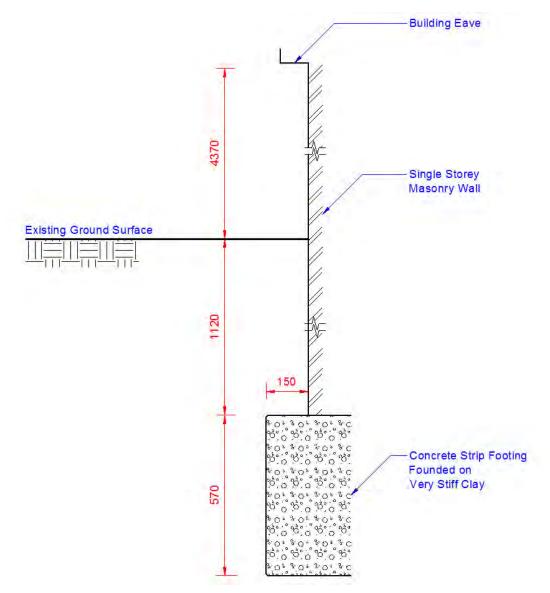


FIGURE 3.5.1: Summary of Existing Footing Geometry and Founding Conditions at Test Location 7

4 COMMENTS AND RECOMMENDATIONS

4.1 STAGE 1 REPORT

The following comments and recommendations have been based on a limited amount of field testing, which does not provide coverage of the entire site for the proposed development. The comments and recommendations of this report may require revision once additional geotechnical testing has been conducted at the site. The comments and recommendations of this report must not be used for final structural design and construction. Additional testing will be conducted at the site once site access becomes available.

Detailed architectural and structural plans of the proposed development were not available at the time of this report being issued. It has been assumed that the construction will be typical of low-rise reinforced concrete framed commercial structures and no unusual performance criteria apply to the proposed addition. Given these assumptions the comments and recommendations of this report may require revision once structural design has progressed.

4.2 SITE CLASSIFICATION

Classification of the site has taken into account the following:

- Identification of the sub-soil profile
- Field classification of soil type and plasticity
- The moisture content regime of the soil profile
- Depth of fill

The site has been classified as 'Class P' in accordance with Australian Standard AS 2870 – 2011, 'Residential Slabs and Footings' due to the following:

- The depths of uncontrolled fill underlying the site.
- The disturbance of the soil profile that is anticipated to result from the demolition of the existing structures at the site.
- The variation in the moisture content regime of the moderately to highly reactive clay profile in conjunction with the presence of a number of trees at, and adjacent to, the site.

4.3 <u>EARTHQUAKE SITE CLASSIFICATION</u>

Australian Standard AS 1170.4 – 2007, 'Structural Design Actions, Part 4: 'Earthquake Actions in Australia' outlines the methods for assigning the site's sub-soil class.

Based on the subsurface conditions encountered at the subject site, and the requirements of Table 4.1 'Maximum Depth Limits for Sub-soil Class C' and Figure 3.2(A) 'Hazard Factor (Z) for Victoria' of the Standard, it is recommended that the following Hazard Factor and Sub-Soil Class are adopted:

• Sub-soil Class: Class C_e – Shallow Soil Site

• Hazard Factor (Z): 0.09

4.4 STRUCTURAL DISTRESS WITHIN EXISTING BUILDING

4.4.1 <u>Likely Causes of Structural Distress</u>

The subject site is underlain by high plasticity clay soils which undergo significant changes in volume when subjected to changes in moisture content. Upon wetting the clays swell appreciably and conversely upon drying the clays shrink. Under normal conditions, where there are no appreciable external wetting or drying influences, a structure, which is constructed on a standard footing arrangement, will largely accommodate the anticipated volumetric changes, which typically occur within the clay between summer and winter. However, the volumetric changes that have occurred at the subject site have exceeded those able to be accommodated by the subject structure, resulting in the observed distress at various locations throughout the subject structure.

In accordance with Figure D1 of Appendix D in Australian Standard 2870 – 2011, 'Residential Slabs and Footings', the subject site is located within Climatic Zone 2, where seasonal variation of temperature, humidity and rainfall influence the moisture condition of the soil profile to a depth of at least 1.8 metres below the existing ground surface. External factors will influence the moisture condition to greater depths. This is demonstrated by the significant variations in the moisture content of the clay between the boreholes at a depth of 2.4 metres below the existing ground surface.

Based on the results of the testing carried out the following factors are likely to have significantly influenced the performance of the footings at the subject site:

By current standards the existing strip footing, which was exposed at Test Location 7, is considered to be completely inadequate. Australian Standard AS 2870 – 2011 'Residential Slabs and Footings – Construction' specifies a minimum strip footing depth of 1.1 metres for articulated masonry construction (single storey structure) on a highly reactive (Class H1) site.

- Australian Standard AS 2870 2011 does not allow the use of brick walls which are not articulated or exceeding one storey in height on a highly reactive (Class H1) site.
- Based on information provided to GeoAust, it was understood that there has been a history of numerous pipes, which connect to the subject building, having leaked and/or ruptured at various times over the life of the subject structure. The elevated moisture contents in Borehole 6 are indicative of a long term source(s) of moisture (leaking pipe) in the vicinity of Borehole 6 that has led to deep seated moisture ingress of the residual clay profile. The presence of uncontrolled water ingress into the high plasticity clay will lead to appreciable heaving of the clay. The pressures exerted by heaving clay are in excess of those able to be accommodated by the structure.
- The numerous trees located within close proximity to the subject building have had an appreciable effect on the clay founding stratum. Individual trees located within 1.0 times their mature height of footings are recognised as being capable of causing settlement related damage to structures in high plasticity clays. For trees in group plantings this distance extends up to 2.0 times the mature heights of the individual trees. The numerous small to large sized trees located immediately adjacent to the subject building are therefore well capable of having caused the damage observed within the structure.

4.4.2 Remedial Measures

Based on the testing completed, we are able to provide the following advice with regard to the stability of the footings which provide support to the existing structure:

- Based on the conditions encountered in Boreholes 6 − 10, the footings which provide support to the existing structure are not at risk of failing in bearing.
- The rate of settlement of the footings which provide support to the subject structure is not expected to accelerate in the short to medium term unless the site conditions are varied significantly from those which prevailed at the site at the time of the site investigation.

Given the level of structural distress to the subject building, it is strongly recommended that a Structural Engineer should be engaged on an ongoing basis to assess the structural condition of the subject building. In the event that the level of structural distress increases appreciably it may be necessary to stabilise/reconstruct sections of the building in order to ensure stability of the structure.

When considering remedial measures for the subject structure it must be appreciated from the outset that the footings which provide support to the existing structure have proven to be inadequate in relation to the prevailing site conditions. It will therefore not be possible to stop future movements within the structure. Any remedial measures are at best aimed at reducing future movements to more acceptable levels. It may well be necessary to carry out periodic repairs to the structure in the future.

4.4.3 <u>Stabilisation of Moisture Content Regime</u>

If underpinning of the subject structure is to be avoided, the following items must be addressed in an effort to stabilise the moisture content regime within the clay founding stratum:

- All trees in the immediate vicinity of the subject building must be removed without delay. All individual trees within 1.0 times their mature height of the subject building and all trees within a group planting that are located within 2.0 times their mature height of the subject building must be removed. No additional trees should be planted at, or adjacent to, the subject site.
- All services connecting to the structure must be checked for leaks and blockages. For nonpressurised services such as sewer and stormwater pipes it will be necessary to locally block
 sections of the pipe and monitor water losses within the filled sections of pipe. The check for
 leaking services must include the roof drainage, below ground pits and all sewer and
 stormwater pipes within the general vicinity of the subject structure. Any leaking pipes, no
 matter how minor, must be repaired immediately. Suitably flexible couplings must be
 incorporated into any new sections of plumbing to ensure that the pipes can accommodate any
 possible future movements without being damaged. Failure to eliminate any concentrated
 sources of the moisture is anticipated to cause ongoing additional damage to the subject
 structure.
- The surface drainage around the perimeter of the structure must be checked to ensure that water is able to freely shed away from the structure to a legal point of discharge. Under no circumstances shall water be permitted to pond on the ground surface within at least 3 4 metres from the perimeter of the subject structure.

Upon carrying out the above remedial measures, the performance of the structure will need to be accurately monitored for at least 24 months. This will allow the moisture regime of the highly plasticity clays underlying the subject building to stabilise. If movements have significantly reduced and are considered acceptable, appropriate repairs may be made to the structure.

4.4.4 <u>Underpinning of Strip Footings</u>

If it is not possible to implement one or more of the remedial measure detailed in Section 4.4.3, or alternatively, if appreciable continuing movements are observed within the subject structure some 24 months after efforts have been made to stabilise the moisture content regime of the clay founding stratum, it will be necessary to underpin the subject structure to a stable founding stratum.

In considering underpinning as a means of stabilising footing movements within the subject building it must be recognised, that whilst underpinning of isolated problem areas will often stabilise the distressed portion of the structure being treated, it in itself may lead to some cracking of sections which are currently in relatively good repair. Underpinning should therefore be extensive rather than localised, in order to minimise future foundation related movements. Alternatively, as a compromise solution, full height articulation must be introduced into the brickwork at all points where the underpinning is terminated. A suitably qualified Structural Engineer will need to be consulted to determine the most suitable locations of full height articulation joints.

It is essential to prevent moisture ingress down to the base of the underpins. The backfill to the front of the underpins must comprise of lean mix concrete or a low permeability proprietary backfill product. The use of the site derived clay must not be considered for use as backfill to the front of the underpins. Compaction of clay within a confined excavation is highly problematic. If the clay is not properly compacted it will allow moisture ingress at the base of the underpins, which will result in future footing movements.

Additional geotechnical testing will need to be carried out before recommendations for the design of underpins can be provided. However, as a guide, it is anticipated that the underpins will need to be founded at a depth of at least 3.0 metres below the existing ground surface in order to be effective, subject to refusal on weathered rhyolite.

The underpinning arrangement will need to be designed by a suitably qualified Structural Engineer.

4.5 NEW FOOTINGS FOR PROPOSED OFFICE ADDITION

Best performance of the proposed structure will be achieved by adopting a uniform footing arrangement and founding depth throughout. Differential settlements may potentially be problematic where more than one footing system or variable founding depths are adopted for the proposed structure.

The presence of moisture softened and highly reactive clays underlying the subject site together with the presence of numerous trees at, and adjacent to, the subject site, precludes the use of shallow footing arrangements founded on clay for the support of the proposed structure at the subject site. It is anticipated that the use of shallow footings founded on clay will result in poor performance of the proposed structure. It will be necessary to found all footings for the proposed structure on the weathered rhyolite rock at the base of any clay. At locations where the depth to the weathered rhyolite exceeds approximately 1.5 metres below the finished ground surface it is anticipated that it will be more economical and practicable to suspend the structure on a series of bored piles which are socketed into the weathered rhyolite. However, the construction of bored piles socketed into the weathered rhyolite must take into account the high to very high strength of the rhyolite. The very high strength rhyolite will necessitate the use of a high capacity drilling rig equipped with a rock coring bucket and the rate of coring will be extremely slow.

It must be noted that full height construction joints must be provided between the existing structure and the new addition which is fully suspended on footings founded on weathered rhyolite rock.

4.5.1 Pad and Strip Footings Founded on Rhyolite

Pad and strip footings must be founded on the weathered rhyolite at the base of any clay. It must be ensured that the footing excavations expose a minimum 80% rhyolite rock with the remainder being very stiff clay. Any clay must be distributed uniformly across the exposed founding stratum. Care must be taken to clean footing excavations of any loose rhyolite boulders or clay softened by moisture ingress. Pad and strip footings may be designed on the basis of the maximum allowable bearing pressures given in Table 4.5.1.1.

TABLE 4.5.1.1: Maximum Allowable Bearing Pressures for Spread Footings Founded on Rhyolite

Founding Material	Maximum Allowable Bearing Pressure (kPa)		
Founding Material	Pad Footing	Strip Footing	
Weathered Rhyolite	600	400	

Structural requirements will govern footing geometry and reinforcement requirements and soil reactivity need not be considered in the design of footings founded on rhyolite. However, a minimum embedment of 0.8 metres below the finished ground level is recommended.

Footing excavations must be dry and free of any loose or softened material prior to pouring concrete. Assuming that footing excavations are free of loose material, the likely total settlements under the above pressures are estimated to be less than 0.5% of the footing width. Differential settlements are expected to be approximately half of the total settlement value. These values will be exceeded where the footing excavations are not properly cleaned.

In order to negate the need for temporary shoring during construction it is recommended that footing excavations are backfilled with mass concrete to the underside of the structural footings as soon as the base of footing excavations have been cleaned and approved. Under no circumstances shall any person enter an unshored footing excavation with a depth exceeding 1.5 metres.

Pad and strip footing excavations must be inspected by a qualified engineer prior to the placement of concrete to ensure that the founding conditions are consistent with the design recommendations. In the event that the design recommendations are not met it may be necessary to either increase the founding depth of the footings or alternatively increase the plan area of the footings.

4.5.2 **Bored Pile Footings**

Bored piles must be socketed into the distinctly weathered rhyolite of very high rock strength, subject to the following minimum founding conditions:

- The length of pile embedment must not be less than 3.0 metres below the ground floor level.
- The embedded length of pile must exceed 3.0 times the pile diameter.
- The pile should penetrate at least 2.0 pile diameters into distinctly or less weathered rhyolite of very high rock strength.
- Pile spacings should exceed 2.5 pile diameters to ensure that full side adhesion is available for the pile sockets.
- At least 60% of the pile load should be provided by side resistance.

Bored piles socketed into the weathered rhyolite will derive capacity from a combination of side shear and base resistance. The minimum required socket length for a given load at a particular pile location will be dependent on the profile of rock quality at each pile location, roughness of the walls of the socket excavation and cleanliness of the base of the socket.

Socket roughness and cleanliness are influenced by pile construction and cleaning methodology. Additional roughening and cleaning of the pile socket is likely to be required after drilling. Once pile loads, sizes and construction methodology are determined, individual sockets may be designed.

It is recommended that the rock profile at each pile location is logged by a suitably experienced engineer at the time of bored pile excavation to ensure that variations in rock strength and the roughness of the socket be carefully monitored to ensure that an adequate socket length is provided.

In accordance with Australian Standard AS 2159 – 2009 'Piling Design and Installation' the geotechnical strength reduction factor is influenced by the scope of geotechnical investigation and means of determining/selecting geotechnical design parameters, the design methodology, construction controls and the method and extent of pile testing.

Piling contractors will need to make an assessment of a suitable geotechnical strength reduction factor for pile design once all the weighting factors and individual risk factors in Table 4.3.2(A) of Australian Standard AS 2159 – 2009 have been taken into consideration, together with any increase in the geotechnical strength reduction factor associated with any testing of the bored piles that is proposed.

Adopting a geotechnical strength reduction factor of 0.56 for preliminary design of bored piles and applying a load factor of 1.35, the pressures given in Table 4.5.2.1 are recommended for the preliminary design of the bored piles socketed into the weathered rhyolite of very high rock strength.

TABLE 4.5.2.1: Base and Socket Shear Resistances for Bored Piles Socketed into rhyolite

Founding Makarial	Design Geotec (ki	hnical Pressure Pa)	Working Pressure (kPa)		
Founding Material	Base Resistance	Socket Shear	Base Resistance	Socket Shear	
Distinctly or less weathered rhyolite (Very High Strength)	2,700	220	2,000	160	

Side adhesion may be applied only to that portion of bored piles founded within rhyolite at penetration depths exceeding 1.5 pile diameters.

Assuming a load factor of 1.35 and that the bases of pile excavations are free of loose material and sufficient roughness of the pile sockets is provided, the settlement at the top of the pile socket under working load is estimated to be approximately 1% of the pile diameter. Elastic shortening of the pile above the top of the socket must be added to this settlement.

Differential settlements between adjacent piles are expected to be approximately half of the total settlement value. These values will be exceeded where the base of the pile excavations are not suitably clean. If cleaning of the pile bases proves problematic it may be necessary to reduce the contribution of the pile base to total pile capacity.

4.5.3 Construction of Bored Piles

Construction of bored piles will need to take into account the following:

- The presence of ground water at depth in excess of 7.5 metres below the existing ground surface.
- The presence of high to very high strength rhyolite will necessitate the use of high capacity piling rig equipped with a rock coring bucket. The rate of coring will be extremely slow.

Socket roughness and cleanliness will significantly influence the load carrying capacity and settlement characteristics of the piles. Failure to remove any smeared clay from the sides of the pile sockets will result in both the pile load capacity not being achieved and excessive settlement of the piles. Both socket roughness and cleanliness are influenced by pile construction and cleaning methodology. Additional roughening and cleaning of the pile sockets is likely to be required after drilling. If the pile sockets cannot be adequately cleaned and adequately roughened it may be necessary to reduce the socket resistance component of the piles in the assessment of the pile capacities.

The pile bases must be cleaned of all loose material using a suitable cleaning bucket. The use of a rock coring bucket or toothed auger is completely unacceptable for cleaning pile bases. Given that at least some of the bored piles will extend below the local ground water table level, cleaning of the pile bases may be difficult. If the bases of the piles cannot be thoroughly cleaned it may be necessary to reduce the base resistance component of the piles in the assessment of the pile capacities.

The pile excavations should be completely dewatered prior to pouring concrete. If ground water seepage cannot be adequately controlled it will be necessary to use a suitable concrete mix, which can be placed below water. The concrete will need to be poured using a tremie pipe and a minimum 2.0 metre depth of concrete maintained above the tremie outlet throughout the pour to maintain plug flow. The finished level of concrete placed should be higher than the design level to allow removal of the anticipated thick layer of laitance which forms on the rising surface of concrete poured below the ground water table using tremie methods.

Drilling of piles, roughening, base cleaning and placement of concrete should be completed as a continuous operation without delay.

Bored pile excavations must be inspected by a qualified engineer prior to the placement of concrete to ensure that the founding conditions are consistent with the above recommendations. If conditions are not consistent with the above recommendations it may be necessary to either increase the founding depth and/or diameter of the bored piles.

4.6 **EXCAVATION**

4.6.1 Excavation Conditions

The surface fill and underlying native silt and clay should be readily excavated using a medium capacity excavator fitted with a toothed bucket. However, the presence of rhyolite cobbles and boulders ('corestones') within the residual clay must be noted. The rhyolite corestones can be quite large and their occurrence within the residual clay can be random. The presence of large rhyolite corestones within the clay profile will result in difficult excavation conditions.

Efficient excavation of the very high strength rhyolite will require the use of a high capacity excavator equipped with a combination of a hydraulic rock breaker and ripping tyne to loosen the rhyolite prior to excavation. Excavation into the very high strength rhyolite is anticipated to be very slow. An allowance for some over-excavation should be made for any detailed excavations in the rhyolite rock.

Ground vibration during excavation of rhyolite rock using an excavator fitted with a hydraulic rock breaker will be perceivable by the occupants of adjacent buildings and possibly may be problematic with regard to the performance of the buildings, depending upon the proximity of the excavation to the adjacent buildings and the size of equipment used to excavate the rhyolite. It would be prudent to conduct a full dilapidation survey of all adjoining structures and undertake vibration monitoring during the initial stages of rock excavation. As a guide to tolerable vibration limits, reference to the German Standard DIN 4150-Part 3 is suggested.

The possible presence of perched seepage water within the fill and near surface silt overlying the clay should be noted. The fill and near surface native soils are anticipated to be unstable and completely unworkable when saturated.

4.6.2 <u>Temporary Batter Slopes</u>

Under the Occupational Health and Safety Act 2004 no worker shall be permitted to enter an excavation exceeding a depth of 1.5 metres unless the excavation has been suitably battered or shored. This is of particular relevance to the residual soils and weathered rhyolite at the subject site, which are prone to sudden collapse without warning.

Temporary batter slopes for a maximum excavation depth of 3.0 metres should be no steeper than the following angles:

• Fill, silt and any moisture softened clay: - 35 degrees

• Native clay of stiff to very stiff consistency: - 45 degrees

• Distinctly weathered rhyolite: - 60 degrees

The above batter angles are measured from the horizontal and are subject to the following conditions:

- Any seepage water is intercepted well behind the excavation batter, prior to the commencement
 of excavation.
- Adjacent surcharge loads do not exceed 5 kPa. An experienced Geotechnical Engineer should perform a stability analysis on any proposed batters where surcharge loads exceed 5 kPa or where the excavation depth exceeds 3.0 metres.
- The crest of the temporary excavation batter is offset at least 3.0 metres from any adjacent structures with strip footing loads not exceeding 50 kN/m, subject to the strip footings being founded on native clay of very stiff consistency.
- Excavations in rock are inspected by a Geotechnical Engineer to ensure local toppling, block or
 wedge failures are not likely. Any excavated faces of rock should be carefully inspected and
 any loosened boulders removed from the face.
- Retention structures should be completed within approximately 1 month of the temporary batters being excavated.

4.6.3 Permanent Batter Slopes

Permanent batter slopes for a maximum excavation depth of approximately 3.0 metres should be no steeper than the following angles:

• Fill, silt and all clay: - 26 degrees (1 in 2 batter)

Distinctly weathered rhyolite:
 50 degrees

The above permanent batter angles are measured from the horizontal and are subject to the following conditions:

Permanent batter slopes are subject to the following conditions:

Adjacent surcharge loads do not exceed 5 kPa. Stability analysis should be performed on any
proposed batters where surcharge loads exceed 5 kPa or where the excavation depth exceeds
approximately 3.0 metres.

- Excavations in rock are inspected by a Geotechnical Engineer to ensure local toppling, block or wedge failures are not likely. Any excavated faces of rock should be carefully inspected and any loosened boulders removed from the face.
- Batters are enclosed or provided with surface protection against erosion.
- Any seepage water is permanently intercepted above the excavation batter.
- A catch drain is provided above the crest of batters and at the toe of batters.

4.6.4 Site Trafficability During Construction

During summer and early autumn when evaporation rates are typically high and rainfall levels low, it should be possible for trucks to traffic the stripped ground surface. Other than dust suppression no significant difficulties are anticipated. During winter and spring, and even following heavy or prolonged rain periods during summer and autumn, only tracked machinery will be able to access the site. If site access is to be provided for trucks once the ground surface has been exposed to rain it will be necessary to strip all poor quality and saturated fill overlying the clay from the areas to be accessed to expose a stable native clay and construct access tracks using non-descript crushed rock (100 millimetre minus), recycled brick and concrete rubble or equivalent placed over a suitable grade of geogrid and/or geotextile fabric. The depth of crushed rock required will depend upon the site conditions at the time of construction, the weight of the vehicles and the traffic frequency. Specialist suppliers of geotextiles should be consulted at the time of construction regarding the selection of an appropriate grade of geogrid or fabric.

4.7 PAVEMENTS AND FLOOR SLABS

4.7.1 <u>Performance of Pavements and Floor Slabs</u>

The successful performance of pavements and floor slabs at the subject site is subject to the following:

- Adequate preparation of the subgrade.
- Adequate surface and subsurface drainage, ensuring that pavement layers and subgrades do not become saturated during the life of the pavements.

Performance of the proposed pavements and floor slabs at the subject site will be commensurate with the level of subgrade preparation and the amount of care taken to prevent extremes in moisture content both during and post construction. Construction of pavements and floor slabs directly on an untreated native clay subgrade should also not be considered, given that the laboratory four day soaked CBR tests returned a very low value of 2.0%.

It is recommended that external pavements should be constructed on a prepared bridging layer of structural fill. For areas at the ground floor level which will be used for habitable space, the use of a suspended stiffened raft slab in lieu of a floating infill concrete slab is recommended.

4.7.2 Ground Floor Slab for Proposed Office Addition

The use of a stiffened raft slab in lieu of a floating infill concrete slab is recommended for habitable areas of the ground floor level within the proposed office addition. Given the variation in the moisture content regime of the highly reactive clay profile underlying the subject site, it will be necessary to deepen the edge beams and internal ribs of the raft slab to weathered rhyolite bedrock. Alternatively, the proposed stiffened raft slab may be fully suspended on footings founded on rhyolite, as detailed in Section 4.5.

Structural requirements will govern the design of a suspended raft slab. However, the minimum dimensions and reinforcement of a stiffened raft slab must at least meet the requirements of AS 2870 – 2011 for a 'Class H1' site classification.

Edge beams and internal ribs for a conventional raft slab founded on weathered rhyolite bedrock may be designed using a maximum allowable bearing pressure of 450 kPa.

It must be ensured that the excavations for all edge beams and load bearing internal ribs expose a minimum 80% weathered rhyolite rock with the remainder being very stiff clay. The clay must be distributed uniformly throughout the exposed founding stratum. Excavations must be dry and free of any loose or softened material prior to pouring concrete. Care must be taken to clean the excavations of any loose rhyolite boulders or clay softened by moisture ingress.

Excavations for all edge beams and load bearing internal ribs must be inspected by a qualified engineer to ensure that the required founding stratum has been achieved. The presence of any unusual features or conditions should be brought to the attention of this office before construction proceeds.

4.7.3 External Pavements Constructed on a Bridging Layer of Structural Fill

All poor quality fill, silt and any moisture softened clay must be stripped to expose native clay of very stiff consistency throughout. Further clay should be stripped as required to provide a minimum depth of 0.45 metres below the proposed pavement subgrade level.

Proof rolling of the stripped clay surface must be closely inspected by an experienced engineer. Any localised soft or heaving areas must be stripped and re-instated using compacted structural fill. If extensive areas of instability are identified during proof rolling of the stripped clay surface, or the subgrade has been exposed to significant rainfall and is unworkable at the time of construction, it will be necessary to place a layer of geogrid (Tensar TX160 geogrid or an equivalent product) over the surface of the clay prior to the placement of any structural fill. The geogrid must be installed in accordance with the manufacturer's specifications. A minimum lap width of 0.6 metres must be provided at all locations.

Structural fill meeting the material and placement specifications of Section 4.8.2 should be placed on the prepared ground surface to construct a bridging layer of compacted fill on which to construct pavements. A minimum depth of 0.45 metres of imported structural fill below the proposed pavement subgrade level is recommended.

Care must be taken to ensure that the bridging layer of structural fill is adequately compacted at the extremities. It is recommended that the bridging layer of structural fill should extend at least 2.0 metres beyond the perimeter of the proposed pavement to ensure adequate compaction under the edges of the pavement.

It is recommended that the preparation, placement and testing of all structural fill for the preparation of the bridging layer of structural fill is completed under Level 1 inspection by a suitably experienced geotechnical practitioner in accordance with Australian Standard AS 3798 – 2007, 'Guidelines on Earthworks for Commercial and Residential Developments'.

Adopting a soaked CBR value of 2.0% for the native clay and assuming a CBR value of 8% for the structural fill, a design CBR value of 4.0% may be adopted on top of a 0.45 metre thick bridging layer of structural fill. If required, a composite design CBR value may be determined for other layered profiles using the following Japan Roads Formula:

$$CBR_c = \left[\Sigma \left(t_n \times CBR_n^{-1/3}\right)\right]^3$$

Where CBR_c = the composite CBR of the layered system

n = layer number

 t_n = thickness of layer n

 $\Sigma t_n = 1.0 \text{ metre}$

 $CBR_n = CBR$ value of layer n

Rigid pavements and floor slabs may be designed using the following long and short term Young's Moduli:

• Structural Fill: - Long Term Modulus = 25 MPa

- Short Term Modulus = 32 MPa.

• Underlying Native Clay: - Long Term Modulus = 10 MPa

- Short Term Modulus = 14 MPa.

A single equivalent modulus value can be calculated for the layered soil profile using the method given in Section 3.3.7.1 of Publication T48 by Cement, Concrete and Aggregates Australia, 2009, titled 'Guide to Industrial Floors and Pavements'.

4.7.4 Subgrade Drainage and Moisture Control

Effective surface and perimeter cut-off drainage must be provided and maintained to ensure that the pavement layers and subgrade cannot become saturated. Premature pavement failure will occur where drainage is poor.

4.7.5 <u>Inspection of Subgrade</u>

The exposed pavement subgrades should be inspected by a qualified engineer during proof rolling to ensure that a suitable level of subgrade preparation has been achieved. The presence of any unusual features or conditions should be brought to the attention of this office before construction proceeds.

4.8 <u>EARTHWORKS</u>

4.8.1 Suitability of In-situ Soils for Use as Structural Fill

The site derived native clay is not recommended for use as structural fill. The high plasticity clays are difficult to compact and are potentially subject to significant volume changes post compaction.

4.8.2 Structural Fill

Imported structural fill may comprise one of the following imported materials:

- Ripped weathered siltstone or sandstone (low to medium strength sedimentary rock)
- Type A fill as defined by VicRoads
- Class 4 or better crushed rock as defined by Vic Roads

All structural fill should satisfy the following criteria:

• Maximum % of material retained on 40mm sieve after compaction:- 20%

• Percentage passing 4.75mm after compaction: -40-80%

Percentage passing 0.075mm after compaction:
 5 – 30%

Maximum Liquid Limit after compaction: - 50%

• Maximum Plasticity Index after compaction: - 25%

• Plasticity Index x % passing 0.425mm sieve after compaction: - ≤650

• Minimum 4-day soaked CBR value: - 8%

• Maximum coefficient of permeability: - 1x10⁻⁷ metre/second

Structural fill must be placed on a stable base. Structural fill should be placed in uniform layers not exceeding a loose thickness of 200 millimetres and compacted to at least 98% of the Standard maximum dry density value as determined in accordance with Australian Standard AS1289 5.1.1. The fill should be moisture conditioned to 85 - 115% of the Standard optimum moisture content at the time of placement.

Where a batter is proposed close to the pavement perimeter, care must be taken to ensure that structural fill is adequately compacted at the extremities. Adequate compaction of the perimeter is best achieved by over filling and subsequently cutting back the perimeter of the fill platform to form final batters.

The placement of any structural fill at the site together with material selection and density testing should be conducted under the supervision of a suitably experienced geotechnical practitioner. All field and laboratory testing associated with the selection of a suitable imported fill material and monitoring of relative compaction should be performed in accordance with the test methods specified in Australian Standard AS 1289, 'Methods of Testing Soils for Engineering Purposes.' Australian Standard AS 3798, 'Guidelines on Earthworks for Commercial and Residential Developments' provides guidance on the specification, execution and control of earthworks relevant to the subject site. Level 1 supervision of all earthworks in accordance with Section 8.2 of Australian Standard AS 3798 is recommended.

4.8.3 Scheduling of Earthworks

During the wetter months of the year, particularly during winter and spring when evaporation rates are low, it is anticipated that it will be extremely difficult to conduct earthworks at the subject site. Significant additional costs and construction delays are likely to be incurred if earthworks are attempted during the wetter months of the year. It is recommended that all earthworks should be scheduled during the drier months of the year.

4.9 CONSTRUCTION REQUIREMENTS

4.9.1 Construction Adjacent to Excavations and Service Pipe Trenches

Buried services should not be located adjacent to footings. Where this cannot be avoided the trench should be backfilled in such a way as to prevent moisture ingress. Any footings located adjacent to excavations or backfilled service trenches should be founded well below a line drawn up at 45° to the horizontal from the base of the excavation.

4.9.2 Inspection of Subgrades and Footing Excavations

The exposed pavement subgrades and all footing excavations should be inspected by a qualified Geotechnical Engineer to ensure that the required founding stratum has been achieved. The presence of any unusual features or conditions should be brought to the attention of this office before construction proceeds.

4.9.3 Site Drainage and Soil Moisture Control Adjacent to Structures

The following minimum measures must be taken in the design and construction of the proposed development to ensure satisfactory performance of the proposed structures and pavements:

- Effective drainage of the site must be maintained at all times.
- Water run-off must be collected and diverted away from the structures and pavement subgrades during construction.
- Water must not be allowed to pond against footings during or after construction.
- The ground adjacent to footings must be graded to provide a permanent fall of 1(V):50(H) away from the footings over at least the first 4.0 metres.
- Water supply and drainage infrastructure must be maintained so that no leakage occurs.
- Construction of garden beds, particularly mounded garden beds, and the planting of trees and large shrubs adjacent to footings and pavements must be avoided.
- Excessive watering adjacent to footings must also be avoided and the installation of an irrigation or sprinkler system adjacent to structures and pavements is not recommended.

4.9.4 Articulation of Structures

Adequate articulation should be provided in accordance with 'The Cement and Concrete Association of Australia' – Technical Note TN61. In addition to the requirements of TN61 a full height articulation joint should be provided at the following locations:

- At the junction where two different footing types intersect.
- Where founding depths vary.
- Where the founding stratum varies.
- At all locations where the proposed addition connects to the existing structure.

4.10 ADDITIONAL SITE TESTING

The comments and recommendations contained within this report have been based on a limited amount of field testing, which does not provide coverage of the entire site for the proposed development. The presence of the existing structures at the subject site precluded access with a drilling rig to parts of the site at the time of the field investigation.

Upon demolition and removal of the existing structures at the site, further site testing, comprising one additional borehole will need to be conducted at the south west corner of the plan area of the proposed office building addition to confirm the subsurface soil and rock conditions over the balance of the site.

4.11 REPORT LIMITATIONS

The comments and recommendations of this report may require revision once additional geotechnical testing has been conducted at the site. The comments and recommendations of this report must not be used for final structural design and construction.

This report is for the use of the party to whom it is addressed only and has been produced specifically for the proposed development as described in Section 1.2 of this report and for no other purpose.

It has been assumed that the conditions encountered by the limited number of boreholes are representative of the site in general. Some variation from the conditions encountered by the boreholes is expected over the site.

It is beyond the scope of this report to comment on any possible contamination of the site.

Contractors should be provided access to this report. This report should only be reproduced in full.

If you require any further information please do not hesitate to contact the undersigned.

For and on behalf of

R. Nobakh

GEOAUST GEOTECHNICAL ENGINEERS PTY LTD

Reza Nobakht

MEng MIEAust

Stephen Mayer

BEng MIEAust CPEng EC-2262

May


TEST LOCATION PLAN

JOB No: 4548
CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

LOCATION: 15 Anderson Street, LILYDALE

NOT TO SCALE

LEGEND

Denotes approximate borehole location

Denotes approximate footing probe and borehole location

APPENDIX A

Definitions of Logging Terms and Symbols

APPENDIX A

EXPLANATION NOTES FOR BOREHOLE AND TEST PIT LOGS

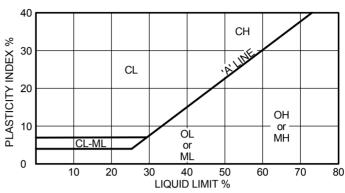
SOIL CLASSIFICATION AND LOG SYMBOLS

SOIL CLASSIFICATION CHART					
	MAJOR D	SYME		TYPICAL	
			GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND GRAVELLY	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES
COARSE	SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES
GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION IS	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	LARGER THAN 2.0MM	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
MORE THAN 50% OF MATERIAL SMALLER THAN	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
63MM IS LARGER THAN 0.075MM	MORE THAN 50% OF COARSE FRACTION IS SMALLER THAN 2.0MM	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
		(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
		LIQUID LIMIT LESS THAN 50		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR
FINE GRAINED SOILS	SILTS AND CLAYS			CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY
			-71/71/- 	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SMALLER THAN 63MM IS SMALLER THAN	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
0.075MM				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIGH	HIGHLY ORGANIC SOILS				PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

GROUND WAT	ER	SAMPLING AND	TESTING
—	Inflow	DS	Disturbed sample
	Outflow	U60	Thin walled tube sample. Number indicates nominal sample diameter in mm
\ \	Standing level on completion	ES	Environmental sample
1/2	Standing level 1/2 hour after completion	SPT	Standard penetration test
	Collapse of borehole annulus	3/6/9 N=15	3,6 and 9 refer to blows per 150mm penetration. N=15 is the sum of blows after the initial 150mm penetration
S	Slight seepage rate	3/6/9 blows for 20mm penetration:	3 and 6 refer to blows per 150mm penetration. 9 blows resulted in 20mm penetration at which point practical
М	Moderate seepage rate	N>15.	refusal of penetration occurred
Н	High seepage rate	S=47kPa	In-situ vane shear test. Result expressed as peak undrained shear strength in kPa
NOT OBSERVED	Ground water observation not possible. Ground water may or may not be present	PP=145kPa	Pocket penetrometer test. Result expressed as dial reading in kPa
NOT	Ground water was not evident during	DCP	Dynamic Cone Penetrometer Test
ENCOUNTERED	excavation or a short time after completion	EX	Excavation. Test starts at base of excavation
	Completion	S	DCP sank under own weight or last blow of previous 100mm increment
		E	End of DCP test
		R	End of DCP test due to effective refusal of penetration

APPENDIX A


EXPLANATION NOTES FOR BOREHOLE AND TEST PIT LOGS

SOIL DESCRIPTION

PARTICLE SIZE

MAJOR DIVISION	SUB- DIVISION	SIZE (mm)		40
Boulders		>200mm		30
Cobbles		63 to 200mm	Į j	
	Coarse	20 to 63mm]	20
Gravel	Medium	6 to 20mm	<u> </u>	
	Fine	2.36 to 6mm	PLASTICITY INDEX	10
	Coarse	0.6 to 2.36mm]	
Sand	Medium	0.2 to 0.6mm		0
	Fine	0.075 to 0.2mm		
0.075mm is th	e approximate	minimum particle size	discernible by	eye

MATERIAL PROPORTIONS

COARSE GRAINED SOILS		FINE GRA	AINED SOILS	IDENTIFICATION
% Fines	Modifier	% Coarse	Modifier	Field Assessment
≤ 5	Omit or use 'trace'	≤ 15	Omit or use 'trace'	Presence just detectable by feel or eye. Properties little or no different to those of primary soil
> 5 ≤ 12	Describe as 'with clay/silt' as applicable	> 15 ≤ 30	Describe as 'with sand/gravel' as applicable	Presence easily detected by feel or eye. Properties little or no different to those of primary soil
> 12	Prefix soil as 'silty/clayey' as applicable	> 30	Prefix soil as 'sandy/gravelly'	Presence obvious by feel or eye. Properties of soil are altered from those of the primary soil

COHESIVE SOILS - CONSISTENCY TERMS

LOG SYMBOL	TERM	UNDRAINED STRENGTH	FIELD ASSESSMENT
VS	Very Soft	<12kPa	Exudes between fingers when squeezed
S	Soft	12 - 25kPa	Can be moulded by light finger pressure
F	Firm	25 - 50kPa	Can be moulded by strong finger pressure
St	Stiff	50 -100kPa	Cannot be moulded by fingers. Can be indented by thumb
VSt	Very Stiff	100 - 200kPa	Can be indented by thumb nail
Н	Hard	> 200kPa	Can be indented by thumb nail with difficulty

GRANULAR SOILS - DENSITY

LOG SYMBOL	TERM	DENSITY INDEX (%)
VL	Very Loose	< 15
L	Loose	15 - 35
MD	Medium Dense	35 - 65
D	Dense	65 - 85
VD	Very Dense	> 85

MOISTURE CONDITION

LOG SYMBOL	TERM	FIELD ASSESSMENT
D	Dry	Clay and silt are hard, friable, powdery, well dry of plastic limit. Sands and gravels are cohesionless, free running
М	Moist	Feels cool, darkened colour. Cohesive soils can be moulded. Granular soils tend to cohere
W	Wet	Feels cool, darkened in colour. Cohesive soils weakened, free water forms on hands when handling. Granular soils cohere

FIELD ASSESSMENT OF FILL COMPACTION

LOG SYMBOL	TERM
APC	Appears poorly compacted
AMC	Appears moderately compacted
AWC	Appears well compacted

APPENDIX A

EXPLANATION NOTES FOR BOREHOLE AND TEST PIT LOGS

ROCK DESCRIPTION

STRENGTH	OF INT	ACT RO	OCK MA	TERIAL
SINCINGIA		ACIAL		I ERIAL

LOG SYMBOL	TERM	POINT LOAD INDEX (MPa) Is50	FIELD ASSESSMENT
EL	Extremely Low	Is50 <0.03	Easily remoulded by hand to a material with soil properties
VL	Very Low	0.03 ≤ ls50 < 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; pieces up to 30mm thick can be broken by finger pressure
L	Low	0.1 ≤ ls50 < 0.3	Easily scored with knife; indentations 1mm to 3mm after firm blows with pick point; core 150mm long and 50mm diameter can be broken by hand; sharp edges of core friable
М	Medium	0.3 ≤ ls50 < 1.0	Readily scored with knife; core 150mm long and 50mm diameter can be broken by hand with difficulty
н	High	1 ≤ ls50 < 3	Core 150mm long and 50mm diameter cannot be broken by hand but can be broken by single firm blow of pick; rock rings under hammer
VH	Very High	3 < Is50 < 10	Hand held specimen breaks with pick after more than one blow; rock rings under hammer
EH	Extremely High	10 ≤ Is50	Specimen requires many pick blows to break intact rock, rock rings under hammer

	LOG SYMBOL		TERM	DEFINITION
	EW		Extremely Weathered	Rock is weathered to such an extent that it has soil properties , i.e. it iether disintegrates or can be remoulded in water
	DW HW MW SW FR		Distinctly Weathered	Rock strength usually changed by weathering. May be discoloured. Porosity may be increased by leaching, or may be decreased by deposition of weathering products in pores. Subdivided into HW and
			Districtly Wedthered	MW with alteration less for MW
			Slightly Weathered	Rock is slightly discoloured but shows little or no change of strength from fresh rock
			Fresh	Rock shows no sign of decomposition or staining

ROCK MASS PROPERTIES

TERM	SEPARATION OF STRATIFICATION PLANES		DESCRIPTION
Thinly laminated	< 6mm	Fragmented	Primarily fragments < 20mm length and mostly of width < core diameter
Laminated	6mm to 20mm	Highly fractured	Core lengths generally less than 20mm to 40mm with occasional fragments
Very thinly bedded	20mm to 60mm	r lightly tractured	Core lengths generally less than 2011111 to 4011111 with occasional fragments
Thinly bedded	60mm to 200mm	Fractured	Core lengths mainly 30mm to 100mm with occasional shorter and longer pieces
Medium bedded	0.2m to 0.6m	Cliabtly fractured	Care lengths generally 0.2m to 1.0m with accessional languar and shorter acctions
Thickly beddded	0.6m to 2.0m	Slightly fractured	Core lengths generally 0.3m to 1.0m with occasional longer and shorter sections
Massive	> 2m	Unbroken	Core has no fractures

ROCK QUALITY DESIGNATION (RQD). RQD is calculated for each core run. The RQD is the sum of the length of all pieces of rock core longer than 100mm expressed as a percentage of the total length of rock core recovered.

CORE RECOVERY. Core recovery is calculated for each core run. Core recovery is the total length of core, rock or soil, recovered expressed as a percentage of the total length of the core run.

DEF	ECT TYPE		INFILL	INFILL	THICKNESS	SURFAC	E SHAPE	ROUG	SHNESS
LOG SYMBOL	TERM	LOG SYMBOL	TERM	LOG SYMBOL	TERM	LOG SYMBOL	TERM	LOG SYMBOL	TERM
BP	Bedding parting	KL	Clean	,,	Veneer	PL	Planar	SL	Slickensided
JT	Joint	CL	Clay	V	<1mm thick	CV	Curved	PO	Polished
FT	Fault	CA	Carbonate	SN	Stain	IR	Irregular	SO	Smooth
SM	Seam	RF	Rock fragments	1	<1mm thick	UN	Undulose	RO	Rough
SH	Sheared zone	DC.	Rock fragments	5	5mm thick	ST	Stepped	VR	Very Rough
CR	Crushed seam	RC	and clay						
IF	Infilled zone								
FR	Fractured zone								

APPENDIX B

Bore Logs

7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276 E-mail: enquiries@geoaust.com.au

BOREHOLE LOG

JOB No: 4548

LOCATION:

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE Refer to Test Location Plan (Figure 1)

RL:

DRILLED BY: P.R DATUM: LOGGED BY: H.V DATE:

E-ma	il: enquirie	es@geoa	iust.com.ai	1	LOGGED BY: P.R			DA.	TUM: TE:	24	/03	3/2016
Method	Ground Water	Depth	Graphic Log	Classification Symbol	Material description	Moisture / Weathering	Density / Consistency			DCP Test		Comments and
100mm Diameter Hand Auger		0.025 - - - - 0.5 _ - - -		- - CH	FILL: Asphaltic Concrete FILL: Gravelly Clay, low plasticity, mottled brown, red, grey, fine to medium grained gravel, with fine to coarse grained sand FILL: Ballast Cobbles CLAY: high plasticity, grey and brown mottled tending brown mottled grey with depth	Moist (MC>PL) Moist (MC>PL)	APC (St)		0.5			S = 65kPa
	C	- - - - - - - 2 _ -		- CL	1.5m - pale brown and grey Silty CLAY: medium plasticity, grey with orange, with silt pockets and seams	-	VSt with H		1.0			S = 70kPa S = 90kPa 3/3/4 N = 7. PP = 200, 210, 215kPa
Wash Boring	NOT OBSERVED	- - - - - - - - - - - - - - - - - - -										5/6/6 N = 12. PP = 320, 300, 330kPa
		- - - -							- _ 4.5 - - - - 5.0		<u> </u>	5/6/10 N = 16. PP = 350, 420, 320kPa

TEST LOCATION

SHEET 1 of 2

Geotechnical **Engineers Pty Ltd** 7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276

BOREHOLE LOG

JOB No:

LOCATION:

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE

Refer to Test Location Plan (Figure 1)

RL:

TEST LOCATION

SHEET 2 of 2

DRILLED BY: P.R DATUM:

			03) 8782 0 aust.com.a			RILLED BY: P.R DGGED BY: H.V					TUM: TE:	24	./03	5/2016
Method	Ground Water	Depth	Graphic Log	Classification Symbol		Material description		Moisture / Weathering	Density / Consistency	DS U60 Sample	£	DCP Test		Comments and
Wash Boring		-			Silty CLAY orange, with	: medium plasticity, grey n silt pockets and seams	y with	- 1	VSt with H pockets	;	-			
N.M.L.C Diamond Coring	NOT OBSERVED	5.5	100 100		joints 0° to 2 undular, cle common he 1cm 6.56m - cla 6.57m - cla	tine grained, brown, fra 20° trace 65° to 90°, pla an or iron stain, trace claded joints with spacing saled joints with spacing y seam, 2mm thick y seam, 11mm thick y seam, 20mm thick	nar to ay veneer,	DW	VH		_ 5.5 _ 6.0 _ 6.5 _ 7.0 _ 7.5			START CORING AT 5.65m RUN 1 (5.65m - 6.13m) 100% CORE RECOVERY RQD = 0% RUN 2 (6.13m - 7.61m) 100% CORE RECOVERY RQD = 20% RUN 3 (7.61m - 9.07m) 100% CORE RECOVERY
2		- - - - -	## CONTROL OF THE PROPERTY OF		8.0m - grey	and brown					_ 8.0 _ 8.0 8.5			RQD = 100%
		- - - 9.07	0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+	-	8.69m - clay	y seam, 15mm thick					9.0			
					END OF BO	DREHOLE LOG AT 9.07	7M							

Engineers Pty Ltd

7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276

E-mail: enquiries@geoaust.com.au

BOREHOLE LOG

JOB No:

LOCATION:

LOGGED BY:

CLIENT: Prensa Pty Ltd

A.M

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

> 15 Anderson Street, LILYDALE Refer to Test Location Plan (Figure 1)

> > RL:

TEST LOCATION

SHEET 1 of 2

DRILLED BY: A.M DATUM:

DATE: 24/03/2016 Sample Classification Symbol Ground Water Density / Consistency Moisture / Weathering Graphic Log Test Comments and Method Material description Depth Depth Test Results DCP 1 DS U60 ES est Dry (MC<PL) APC FILL: Clayey Silt, low plasticity, grey, trace (VSt) 0.25 FILL: Silty Clay, medium plasticity, Moist yellow-brown with grey, with silt pockets (MC>PL) 0.5 0.55 FILL: Clayey Silt, medium plasticity, grey APC Dry (MC<PL) with brown (VSt) 0.9 Silty CLAY: high plasticity, yellow-brown and CH Moist **VSt** 1.0 S > 120kPa grey mottled with red-brown (MC>PL) S > 120kPa 1.5 2.0 27mm Diameter Auger NOT OBSERVED 2.5 2.5 CL Silty CLAY: medium plasticity, pale grey and yellow-brown, with bands of clayey silt approximately 0.05mm to 150mm thick 3.0 5/7/8 N = 15. PP = 330, 320, 320kPa Crumbles 3.5 4.5 5/8/11 N = 19.

Geodust Geotechnical Engineers Pty Ltd 7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276

BOREHOLE LOG

JOB No: 4548

LOCATION:

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE Refer to Test Location Plan (Figure 1)

on Plan (Figure 1)

RL:

TEST LOCATION

SHEET 2 of 2

DRILLED BY: A.M DATUM:

E-ma	il: enquirie	es@geoa	ust.com.ai	u	LOGGED BY: A.M			DA ¹	ΓUM: ΓΕ:	24	/03	3/2016
Method	Ground Water	Depth	Graphic Log	Classification Symbol	Material description	Moisture / Weathering	Density / Consistency	DS Sample S	£	Test		Comments and
N.M.L.C Diamond Coring	NOT OBSERVED	6.07			Silty CLAY: medium plasticity, pale grey and yellow-brown, with bands of clayey silt approximately 0.05mm to 150mm thick, with rhyolite seams RHYOLITE: brown and grey RHYOLITE: brown with grey, fractured, joints 0° to 80°, planar, smooth, iron stain, common healed joints with spacing less than 1cm	Moist (MC>PL) DW DW	VSt L to M		- 5.5 - 6.0 - 6.5 - 7.0 - 7.5 - 8.0			30 blows for 70mm penetration: SPT. START CORING AT 6.07m RUN 1 (6.07m - 6.63m) 100% CORE RECOVERY RQD = 0% RUN 2 (6.63m - 7.11m) 100% CORE RECOVERY RQD = 21% RUN 3 (7.11m - 8.55m) 100% CORE RECOVERY RQD = 72%
					END OF BOREHOLE LOG AT 8.55M							

7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276 E-mail: enquiries@geoaust.com.au

BOREHOLE LOG

JOB No: 4548

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE

LOCATION: Refer to Test Location Plan (Figure 1)

RL:

DRILLED BY: P.R **DATUM:**

LOGGED BY: H.V **DATE**: 22/03/2016

					LOGGED BY: H.V	,		DAT	E:	22	/03	/2016
Method	Ground Water	Depth	Graphic Log	Classification Symbol	Material description	Moisture / Weathering	Density / Consistency	DS U60 Sample ES	Depth	DCP Test	Test	Comments and Test Results
		0.02		\/ -	FILL: Asphaltic Concrete FILL: Silty Sandy Gravel (Crushed Rock), fine to medium grained, brown with grey, sub-angular	/ Moist	AWC (D)		- -			50mm diameter PVC standpipe installed to 6.1m depth. Screened from 3.1m to 6.1m.
neter Auger		-	-	СН	Silty CLAY: high plasticity, brown mottled grey, trace fine grained sand	Moist (MC>PL)	VSt		- 0.5 - -			S > 120kPa
127mm Diameter Auger	18/4/16	1.25			1.2m - pale orange grey	Dry	N H /		- - 1.0 -			S > 120kPa
	*	1.5_	0+0+0+0+0+0 +0+0+0+0+0+0+0+0+0+0+0+0+0+	-	RHYOLITE: pale brown and grey RHYOLITE: fine grained, brown and grey,	(MC <pl)<="" td=""><td>H</td><td></td><td>- - 1.5</td><td></td><td></td><td>START CORING AT 1.5m RUN 1 (1.5m - 1.75m)</td></pl>	H		- - 1.5			START CORING AT 1.5m RUN 1 (1.5m - 1.75m)
		- - - - - -	33 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		fragmented, fractures planar, smooth, clean or iron stained, trace clay veneer (1-3mm)		VH		- - - _ 2.0 - - - - _ 2.5			100% CORE RECOVERY RQD = 0% RUN 2 (1.75m - 1.9m) 100% CORE RECOVERY RQD = 0% RUN 3 (1.9m - 2.06m) 100% CORE RECOVERY RQD = 0% RUN 4 (2.06m - 2.16m) 100% CORE RECOVERY RQD = 0% RUN 5 (2.16m - 2.34m) 100% CORE RECOVERY
Ď.		2.92 -	\$40+04-04-04-04-04-04-04-04-04-04-04-04-04-0	-	2.57m - highly fractured with common healed joints at less than 1cm spacing 2.84m - clay seam (gravelly), 80mm thick				- - -			RQD = 0% RUN 6 (2.34m - 2.46m) 100% CORE RECOVERY RQD = 0% RUN 7 (2.46m - 2.92m) 100% CORE RECOVERY
iamond Coring		- - -		-	\2.88m - fragmented CORE LOSS (Inferred Fragmented Rock)	-	-		_ 3.0 - -			RQD = 0% RUN 8 (2.92m - 3.4m) 0% CORE RECOVERY RQD = 0%
N.M.L.C Diamor		3.4 . 3.53 –	0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+	-	RHYOLITE: fine grained, brown and grey, fragmented, fractures planar, smooth, clean or iron stained, trace clay veneer (1-3mm) CORE LOSS (Inferred Fragmented Rock)	DW -	VH -		- 3.5 - -			RUN 9 (3.4m - 3.45m) 100% CORE RECOVERY RQD = 0% RUN 10 (3.45m - 3.87m) 19% CORE RECOVERY RQD = 0%
		4.04							- - _ 4.0			RUN 11 (3.9m - 4.14m) 40% CORE RECOVERY RQD = 0%
		4.33	10+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+	-	RHYOLITE: fine grained, brown and grey, fragmented, fractures planar, smooth, clean or iron stained, trace clay veneer (1-3mm)	DW	VH		- - -			RUN 12 (4.14m - 4.33m) 100% CORE RECOVERY RQD = 0% RUN 13 (4.33m - 4.64m)
		- - -	u-10-10-10-10-10-10-10-10-10-10-10-10-10-	_	RHYOLITE: fine grained, brown and grey, fractured joints 0° to 90°, planar, smooth, clean or iron stained, common healed joints with less than 1cm spacing	DW	VH		- 4.5 - - - - 5.0			42% CORE RECOVERY RUN 14 (4.64m - 5.32m) 100% CORE RECOVERY RQD = 0%

TEST LOCATION

SHEET 1 of 2

7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276

BOREHOLE LOG

JOB No: 4548

LOCATION:

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE Refer to Test Location Plan (Figure 1)

RL:

TEST LOCATION

SHEET 2 of 2

DRILLED BY: P.R **DATUM:**

E-mail: e	enquiries	@geoa	ust.com.au	1		LOGGED BY: H.V			DA.	TUM: TE:	22	/03	/2016
Method	Ground Water	Depth	Graphic Log	Classification Symbol		Material description	Moisture / Weathering	Density / Consistency	DS U60 Sample	Depth	DCP Test	Test	Comments and Test Results
N.M.L.C Diamond Coring		-	0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+	-	fractured clean or with less	ITE: fine grained, brown and grey, d joints 0° to 90°, planar, smooth, iron stained, common healed joints s than 1cm spacing highly fractured zone, 140mm thick	DW	VH		- - - _ 5.5			RUN 15 (5.32m - 5.87m) 65% CORE RECOVERY RQD = 0%
M.L.C		5.68 5.87	1010101010	-	CORE L	LOSS	-	-		-			RUN 16 (5.87m - 6.1m)
Ž		6.1	0+0+0+0+0+0 0+0+0+0+0+0+0 0+0+0+0+0+0+	- -	fracture	ITE: fine grained, brown and grey, d joints 0° to 90°, planar, smooth, riron stained, common healed joints	DW	VH		6.0			100% CORE RECOVERY RQD = 0%
					with less 5.87m -	s than 1cm spacing clay seam, 150mm thick F BOREHOLE LOG AT 6.1M							

7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276

E-mail: enquiries@geoaust.com.au

BOREHOLE LOG

JOB No: 4548

LOCATION:

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE Refer to Test Location Plan (Figure 1)

RL:

TEST LOCATION

SHEET 1 of 1

DRILLED BY: A.M DATUM:

LOGGED BY: A.M **DATE:** 23/03/2016

L-IIIa	. enquine	-swyeuc	iust.com.ai	u	LOGGED BY: A.M			DA	\TE	:	23	/03	/2016
Method	Ground Water	Depth	Graphic Log	Classification Symbol	Material description	Moisture / Weathering	Density / Consistency	DS U60 Sample	\Box	Depth	DCP Test	Test	Comments and Test Results
N.M.L.C Diamond Coring	NOT OBSERVED	0.03 - 0.25 - 0.3 - 0.45		- ML CH	FILL: Asphaltic Concrete FILL: Silty Sandy Gravel (Crushed Rock), fine to medium grained, brown with grey, angular, igneous; Sand, fine to coarse grained FILL: Silty Sandy Gravel (Crushed Rock), fine to coarse grained, brown with grey, angular, igneous; Sand, fine to coarse grained Clayey SILT: low plasticity, grey trace brown Silty CLAY: medium to high plasticity, grey-brown mottled Silty CLAY: medium plasticity, pale yellow-brown and grey RHYOLITE: grey and brown, highly fractured to fragmented, joints 0° to 90°, planar, smooth, iron stain CORE LOSS RHYOLITE: grey and brown, highly fractured to fragmented, joints 0° to 90°, planar, smooth, iron stain	Moist Very Moist WC>>PL Very Moist (MC>>PL DW				0.5 1.0 1.5 2.0			S = 40kPa S = 70kPa S > 120kPa START CORING AT 1.5m RUN 1 (1.5m - 1.84m) 68% CORE RECOVERY RQD = 0% RUN 2 (1.84m - 2.01m) 100% CORE RECOVERY RQD = 0% RUN 3 (2.01m - 2.27m) 100% CORE RECOVERY RQD = 0% RUN 4 (2.27m - 2.56m) 100% CORE RECOVERY RQD = 0% RUN 4 (2.27m - 2.56m) 100% CORE RECOVERY RQD = 0%
					END OF BOREHOLE LOG AT 2.56M								

7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276 E-mail: enquiries@geoaust.com.au

BOREHOLE LOG

JOB No: 4548

LOCATION:

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE Refer to Test Location Plan (Figure 1)

RL:

TEST LOCATION

SHEET 1 of 3

DRILLED BY: A.M DATUM:

LOGGED BY: A.M **DATE:** 24/03/2016

					LOGGED BY: A.M			DA	(TE		24	/03	/2016
Method	Ground Water	Depth	Graphic Log	Classification Symbol	Material description	Moisture / Weathering	Density / Consistency	DS U60 Sample	ES	Depth	DCP Test	Test	Comments and Test Results
		0.05		- /	FILL: Asphaltic Concrete FILL: Silty Clay, low plasticity, orange-brown, with clayey silt pockets and fine to medium grained gravel	Moist (MC <pl)< td=""><td>- AWC</td><td></td><td>-</td><td></td><td></td><td></td><td>50mm diameter PVC standpipe installed to 11.23m depth. Screened from 5.23m to 11.23m.</td></pl)<>	- AWC		-				50mm diameter PVC standpipe installed to 11.23m depth. Screened from 5.23m to 11.23m.
eter Auger		0.4 _		СН	Silty CLAY: high plasticity, yellow-brown and grey mottled, trace red-brown	Moist (MC>PL)	VSt		-	0.5			S = 104kPa
127mm Diameter Auger		- - - -					St		-	1.0			
		- - -							-	_ 1.5			S = 82kPa 3/3/7 N = 10.
		- - - -					VSt		-	2.0		A	
		- - - -							-	2.5			
g		- - - -							-	3.0		\	4/7/9 N = 16.
Wash Boring		- - -							-	3.5		$\frac{1}{\sqrt{2}}$	PP = 450, 430, 470kPa
		3.7		CL	Silty CLAY: medium to high plasticity, grey with yellow-brown and red-brown, with clayey silt seams and pockets	Moist (MC>PL)	Н			4.0			
		- - -								_4.5			6/44/46 N = 27
		- - -							-			\bigvee	6/11/16 N = 27. PP = >600kPa
				<u> </u>	f logging torms and symbols					5.0		П	Figure R. 8

7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276 E-mail: enquiries@geoaust.com.au

BOREHOLE LOG

JOB No: 4548

LOCATION:

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE Refer to Test Location Plan (Figure 1)

RL:

DRILLED BY: A.M DATUM:

LOGGED BY: A.M DATE: 24/03/2016

	T C T C T C T C T C T C T C T C T C T C	-03	1	_	LOGGED BY: A.M	1		DA	TE:		24	/03	/2016
Method	Ground Water	Depth	Graphic Log	Classification Symbol	Material description	Moisture / Weathering	Density / Consistency	DS U60 Sample	ES Oorth	ındən	DCP Test	Test	Comments and Test Results
Wash Boring	18/4/16				Silty CLAY: medium to high plasticity, grey with yellow-brown and red-brown, with clayey silt seams and pockets RHYOLITE: pale grey and brown,	Moist (MC>PL)	н			.0 .0 .5			7/15/17 N = 32. PP = >600kPa 6/11/14 N = 25. PP = >600kPa
		_	100 100 100 100 100 100 100 100 100 100		fragmented with clay infill and seams	EW	EL		9.	.0		X	19/34/- N > 34. Hammer double bouncing START CORING AT 9.3m RUN 1 (9.3m - 9.88m)
TOTAL STATE		9.88	01010101110101010101010101010101010101	-	9.44m - highly fractured band, 250mm thick	DW	VH		9.	.5			100% CORE RECOVÉRY RQD = 0%
95 191 191		0.00	9+0+0+0+0+0 0+0+0+0+0+0+0 9+0+0+0+0+0+0	-	Continued next page	DW	VH		+ 4	_			
1			10+0+0+0+0+0	1					1(0.0			

TEST LOCATION

SHEET 2 of 3

Engineers Pty Ltd

CLIENT: PROJECT:

JOB No:

LOCATION:

Prensa Pty Ltd

Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE Refer to Test Location Plan (Figure 1)

BOREHOLE LOG

TEST LOCATION

SHEET 3 of 3

T: (03	8) 8787 56	63 F: (NONG SO 03) 8782 0: aust.com.au	276	3175	DRILLED BY: LOGGED BY:	A.M A.M	(RL DA	: TUM: TE:	24	1/03	3/2016
Method	Ground Water	Depth	Graphic Log	Classification Symbol		Material de	escription	Moisture / Weathering	Density / Consistency	DS U60 Sample	Es Depth	DCP Test	Test	Comments and Test Results
N.M.L.C Diamond Coring Method	Ground 1	10.27 - 10.42 - 10.66 - 10.82 - 11.23 -	Capplication of the control of the c	-	fracture planar, s 1mm to less tha CORE L RHYOL fracture planar, s joints at CORE L RHYOL fracture planar, s joints at planar, s joints at planar, s	ITE: grey and bro d to fragmented, j smooth, iron stair 10mm thick, com n 1cm spacing LOSS ITE: grey and bro d to fragmented, smooth, iron stair less than 1cm sp LOSS ITE: grey and bro d to fragmented,	wn, highly joints 0° to 90°, i, with clay seams amon healed joints at wn, highly joints 0° to 90°, i, common healed pacing wn, highly joints 0° to 90°, i, common healed pacing wn, highly joints 0° to 90°, i, common healed pacing	Moisture Moisture	$\exists \left(\begin{array}{ccc} & \exists \left(\begin{array}{ccc} & \exists \end{array} \right) \end{array} \right)$		- 10.5 - 10.5 - 11.0	DCP	Test	Test Results

7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276

BOREHOLE LOG

JOB No: 4548

LOCATION:

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE

Refer to Test Location Plan (Figure 1)

RL:

TEST LOCATION

6

SHEET 1 of 1

DRILLED BY: J.F DATUM:

T: (03 E-mai) 8787 56 I: enquirie	63 F: (e es@geoa	03) 8782 0 aust.com.a	276 u	DRILLED BY: J.F LOGGED BY: H.V				TUM: TE:	22	ว/กว	3/2016
Method	Ground Water	Depth	Graphic Log	Classification Symbol	Material description	Moisture / Weathering	Density / Consistency	DS U60 Sample	£	Test		Comments and
		0.3 _ 0.5 _		-	FILL: Tan Bark 0.05m - dark brown FILL: Silty Sand, fine to medium grained, brown, poorly graded, with fine to medium grained gravel and rootlets FILL: Clay, high plasticity, brown	Dry Dry (MC>PL)	APC (L)		- - - _ 0.5			S = 90kPa
er Hand Auger	NOT ENCOUNTERED	0.9 _ 1.1 _		- ML	FILL: Silty Sand, brown, poorly graded, with fine grained gravel SILT: low plasticity, grey mottled brown, porous	Dry Dry (MC <pl)< td=""><td>APC (MD)</td><td></td><td>_ 1.0</td><td></td><td></td><td></td></pl)<>	APC (MD)		_ 1.0			
100mm Diameter Hand Auger	NOT ENC	1.4 _ - - -		СН	Silty CLAY: medium to high plasticity, mottled grey-brown	Moist (MC>PL)	VSt		_ _ 1.5 _			S > 120kPa
		- - - - 2.5		-	2.1m - becomes mottled orange, grey, red				2.0			S > 120kPa S > 120kPa
					END OF BOREHOLE LOG AT 2.5M							
					Floaging terms and symbols							Figuro B. 1

7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276 E-mail: enquiries@geoaust.com.au

BOREHOLE LOG

JOB No: 4548

LOCATION:

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE Refer to Test Location Plan (Figure 1)

RL:

DRILLED BY: J.F DATUM:
LOGGED BY: H.V DATE:

24/03/2016 DATE: **Ground Water** Classification Symbol Sample Density / Consistency Moisture / Weathering Graphic Log Test Comments and Method Material description Test Results Depth Depth DCP 1 DS U60 ES est FILL: Tan Bark 0.3 FILL: Silty Sand, fine to medium grained, Dry APC dark grey, with tan bark, clay lumps and fine (L) 0.5 to coarse grained gravel, trace roots 0.7 FILL: Silty Gravel, medium to coarse grained, brown, with rootlets 100mm Diameter Hand Auger NOT ENCOUNTERED 1.0 1.15 Clayey SILT: low plasticity, pale brown and grey mottled Dry (MC<PL) VSt ML 1.5 S > 120kPa СН Silty CLAY: medium to high plasticity, Moist mottled orange-brown (MC>PL) 2.0 S > 120kPa 2.5 S > 120kPa END OF BOREHOLE LOG AT 2.55M

TEST LOCATION

SHEET 1 of 1

7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276 E-mail: enquiries@geoaust.com.au

BOREHOLE LOG

JOB No: 454

LOCATION:

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE Refer to Test Location Plan (Figure 1)

RL:

DRILLED BY: A.M DATUM:

E-m	ail: enquirie	es@geoa	ust.com.au	u		LOGGED BY: A.M			\TE)IVI. <u>=:</u>	24	/03	/2016
Method	Ground Water	Depth	Graphic Log	Classification Symbol		Material description	Moisture / Weathering	Density / Consistency			DCP Test		Comments and
127mm Diameter Auger	NOT ENCOUNTERED	0.075 _ 0.28 _ - - - - - - - 1	00000000000000000000000000000000000000		FILL: Si grey and with cob	sphaltic Concrete ilty Sandy Gravel (Crushed Rock), d brown; Sand, fine to coarse grained, bles ITE: brown and pale grey	Dry DW	AWC H to VH	-	0.5			
					END OF	F BOREHOLE LOG AT 1M							EFFECTIVE AUGER REFUSAL

TEST LOCATION

8

SHEET 1 of 1

7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276

BOREHOLE LOG

JOB No: 454

LOCATION:

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE
Refer to Test Location Plan (Figure 1)

RL:

TEST LOCATION

SHEET 1 of 1

DRILLED BY: A.M DATUM:

E-mai	il: enquirie	es@geoa	iust.com.ai	u	LOGGED BY: A.M				ATU ATE		24	/03	/2016
Method	Ground Water	Depth	Graphic Log	Classification Symbol	Material description	Moisture / Weathering	Density / Consistency	DS Sample	$\overline{}$	Depth	DCP Test	Test	Comments and Test Results
127mm Diameter Auger	NOT ENCOUNTERED	0.08	Grant de constitution de const	- H	FILL: Asphaltic Concrete FILL: Silty Sandy Gravel (Crushed Rock), grey and brown; Sand, fine to coarse grained, with cobbles FILL: Clayey Silt, low plasticity, brown, with fine to coarse grained gravel Clayey SILT: medium plasticity, yellow-brown mottled grey Silty CLAY: high plasticity, grey and brown mottled, with clayey silt laminae Silty CLAY: medium plasticity, pale yellow-brown and brown RHYOLITE: brown and grey	Dry Moist (MC <pl) (mc="" moist="">PL) Moist (MC>PL) SW</pl)>	VSt VSt		-	1.0			
					END OF BOREHOLE LOG AT 1.5M								

7 Micro Circuit, DANDENONG SOUTH VIC 3175 T: (03) 8787 5663 F: (03) 8782 0276 E-mail: enquiries@geoaust.com.au

BOREHOLE LOG

JOB No: 454

LOCATION:

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

15 Anderson Street, LILYDALE Refer to Test Location Plan (Figure 1)

RL:

TEST LOCATION

SHEET 1 of 1

DRILLED BY: A.M DATUM:

LOGGED BY: A.M DATE: 30/03/2016

					LOGGED BY: A.M			DA	TE:	:	30/	03/2	2016
Method	Ground Water	Depth	Graphic Log	Classification Symbol	Material description	Moisture / Weathering	Density / Consistency	DS U60 Sample	_	Depth	DCP Test	Test	Comments and Test Results
		0.2		-	FILL: Gravelly Sandy Silt, low plasticity, grey; Sand, fine to coarse grained; Gravel, fine to coarse grained	Dry	APC APC		-				
		0.4	<u> </u>	ML	FILL: Silty Sandy Gravel, fine to coarse grained, angular, grey; Sand, fine to coarse grained	Dry Dry (MC <pl)< td=""><td></td><td></td><td>E</td><td>0.5</td><td></td><td></td><td></td></pl)<>			E	0.5			
		-			Clayey SILT: low plasticity, grey mottled brown, clay content increasing with depth	(MC <pl)< td=""><td></td><td></td><td>ŀ</td><td></td><td></td><td></td><td></td></pl)<>			ŀ				
d Auger	ERED	-		-					-	1.0			
127mm Diameter Hand Auger	NOT ENCOUNTERED	1.1		СН	Silty CLAY: medium to high plasticity, yellow-brown and grey mottled, with silt inclusions	Moist (MC <pl)< td=""><td>Н</td><td></td><td>-</td><td></td><td></td><td></td><td></td></pl)<>	Н		-				
7mm Dia	NOTE	1.4 _		СН	Silty CLAY: high plasticity, brown and grey mottled				-	1.5			
12		-							-				
		-							-	2.0			
		2.5		-	2.2m - trace extremely weathered rhyolite					2.5			
		2.0			END OF BOREHOLE LOG AT 2.5M					2.0			

APPENDIX C

Core Photographs

JOB No: 4548

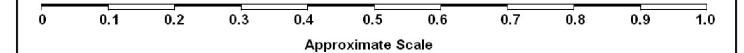
CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

LOCATION: 15 Anderson Street, LILYDALE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

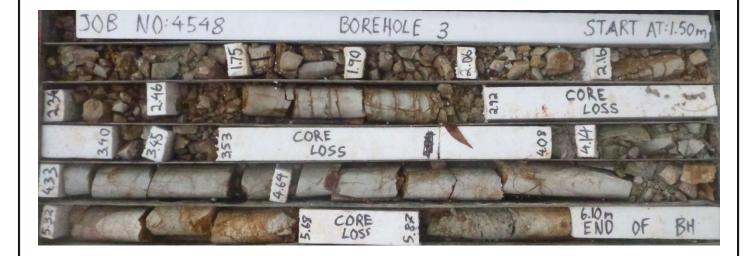
Approximate Scale

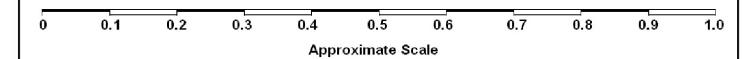


JOB No: 4548

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

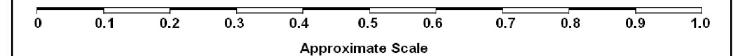




JOB No: 4548

CLIENT: Prensa Pty Ltd

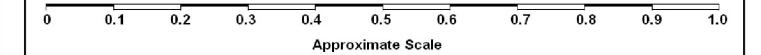
PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building



JOB No: 4548

CLIENT: Prensa Pty Ltd

PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building



JOB No: 4548

CLIENT: Prensa Pty Ltd

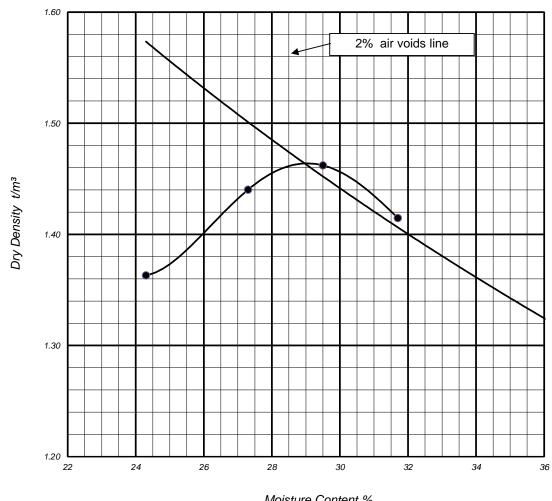
PROJECT: Proposed Additions to Yarra Ranges Council Municipal Office Building

APPENDIX D

Laboratory Test Results

STANDARD COMPACTION

AS 1289.5.1.1


		Job No	16038
CIVIL GEC	DTECHNICAL SERVICES	Report No	16038/R042
6 - 8 Rose A	venue, Croydon 3136	Date of Issue	13/04/16
Client	GEOAUST (DANDENONG SOUTH)	Tested by	BG

Client	GEOAUST (DANDENONG SOUTH)	Tested by	BG
Project	JOB No. 4548 15 ANDERSON STREET	Date tested	06/04/16
Location	LILYDALE	Checked by	PJF
Sample Id	lentification Sample A	Sample No	16038037
Sample D	escription	Sampled by	Client
CLAY, hiç	gh plasticity, grey / brown	Sampling date	2016
<u> </u>			

Oversize material retained on 19.0mm sieve = 0 % Mould Type 1.46 *t/m*³ Optimum Moisture Content 29.0 % Maximum Dry Density

DRY DENSITY - MOISTURE CONTENT PLOT

Calculated apparent particle density = $2.63 \ t/m^3$

Moisture Content %

Approved Signatory : Peter Fry

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

SOAKED C.B.R. TEST

AS 1289.6.1.1

CIVIL GEOTECHNICAL SERVICES

6 - 8 Rose Avenue, Croydon 3136

 CES
 Report No
 16038/R043

 Date of Issue 13/04/16

Job No

16038

o o noco ni onac, oney aon o roc		Date of 18846 10/04/10
Client GEOAUST (DANDENONG S	SOUTH)	Tested by BG
Project JOB No. 4548 15 ANDERS	ON STREET	Date tested 12/04/16
Location LILYDALE		Checked by PJF
Sample No		16038037
Sample identification		Sample A
Date sampled		2016
Sampled by		Client
Sampling method		By Client
Field moisture content		
Moisture content	%	-
Compaction details 1		
AS 1289.5.1.1 Standard Compaction - see	Report No	16038/R042
Maximum Dry Density	t/m³	1.46
Optimum Moisture Content	%	29.0
Material retained on 19.0mm sieve and dis	scarded %	0
Compaction details 2		
Target laboratory density ratio	%	98
Target laboratory moisture ratio	%	100
No of layers		3
Specimen details before soaking		
Dry density	t/m³	1.43
Moisture content	%	29.3
Laboratory moisture ratio	%	101
Laboratory density ratio	%	98
Period of soaking	days	4
Specimen details after soaking		
Dry density	t/m³	1.40
Moisture content	%	31.6
Laboratory moisture ratio	%	109
Laboratory density ratio	%	96
Test details		
Moisture content top 30mm	%	35.1
Surcharge mass	kg	4.5
Swell	%	2.0
C.B.R. VALUE	%	2.5
Penetration	mm	2.5
Sample description		CLAY, high plasticity, grey / brown

STANDARD COMPACTION

AS 1289.5.1.1

		Re	eport No	16038 16038/R044
Client GEOA Project JOB	AUST (DANDENONG SOUTH) No. 4548 15 ANDERSON STREE	Τe Γ Da	ested by ate tested	13/04/16 BG 06/04/16 PJF
	· · · · · · · · · · · · · · · · · · ·		-	16038038
				Client 2016
Oversize material	retained on 19.0mm sieve = 0 %	Mould Type		Α
Maximum Dry Dei	nsity 1.50 t/m³	Optimum Moisture Con	tent	26.5 %
CIVIL GEOTECHNICAL SERVICES 6 - 8 Rose Avenue, Croydon 3136 Client GEOAUST (DANDENONG SOUTH) Project JOB No. 4548 15 ANDERSON STREET Location LILYDALE Sample Identification Sample B Sample Description CLAY, high plasticity, brown with red and grey Report No 16038/R044 13/04/16 Tested by BG 06/04/16 Checked by PJF Sample No 16038038 Sample Description Sample Description CLAY, high plasticity, brown with red and grey A Mould Type A				
		2% air voids	s line	
1.40				
	23 25 27	29	31	33

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025.

Accreditation No 9909

Moisture Content %

AS512-R8-MAR 13

SOAKED C.B.R. TEST

AS 1289.6.1.1

CIVIL GEOTECHNICAL SERVICES

6 - 8 Rose Avenue, Croydon 3136

Job No 16038 Report No 16038/R045 Date of Issue 13/04/16

- o Nose Avenue, Croydon 3730		Date of 1880e 13/04/10
Client GEOAUST (DANDENONG SOI	UTH)	Tested by BG
Project JOB No. 4548 15 ANDERSON	N STREET	Date tested 12/04/16
Location LILYDALE		Checked by PJF
Sample No		16038038
Sample identification		Sample B
Date sampled		2016
Sampled by		Client
Sampling method		By Client
Field moisture content		
Moisture content	%	-
Compaction details 1		
AS 1289.5.1.1 Standard Compaction - see Re	eport No	16038/R044
Maximum Dry Density	t/m³	1.50
Optimum Moisture Content	%	26.5
Material retained on 19.0mm sieve and discar	rded %	0
Compaction details 2		
Target laboratory density ratio	%	98
Target laboratory moisture ratio	%	100
No of layers		3
Specimen details before soaking		
Dry density	t/m³	1.46
Moisture content	%	27.0
Laboratory moisture ratio	%	102
Laboratory density ratio	%	98
Period of soaking	days	4
Specimen details after soaking		
Dry density	t/m³	1.42
Moisture content	%	30.7
Laboratory moisture ratio	%	116
Laboratory density ratio	%	95
Test details		
Moisture content top 30mm	%	33.7
Surcharge mass	kg	4.5
Swell	%	3.0
C.B.R. VALUE	%	2
Penetration	mm	2.5
Sample description		CLAY, high plasticity, brown with red and grey

Client

Project

TEST RESULTS

AS 1289.2.1.1, 3.1.2, 3.2.1, 3.3.1, 3.4.1 & 3.6.1

CIVIL GEOTECHNICAL SERVICES

6 - 8 Rose Avenue, Croydon 3136

GEOAUST (DANDENONG SOUTH)

JOB No. 4548 15 ANDERSON STREET

Job No 16038

Report No 16038/R046

Date of Issue 13/04/16

Tested by	SK
Date tested	07/04/16
01 1 11	D 1E

ocation LILYDA	LE			te tes ecked		PJF	,
Sample Identification	Soil Description	Field Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index %	Linear Shrinkage %	% Passing 75µm sieve
16038039 BH5 1.5 - 2.0m	CLAY, high plasticity, pale grey and orange-brown	-	52	19	33	12.0	-
16038040 BH6 0.4 - 0.5m	CLAY, medium plasticity, pale brown	17.7	-	1	-	-	-
16038041 BH6 0.9 - 1.0m	CLAY, medium plasticity, pale brown	10.0	-	1	-	-	-
16038042 BH6 1.4 - 1.5m	CLAY, high plasticity, pale grey and orange-brown	25.1	78	23	55	18.0	-
16038043 BH6 1.9 - 2.0m	CLAY, high plasticity, pale grey and orange-brown	24.7	81	23	58	20.0	-
16038044 BH6 2.4 - 2.5m	CLAY, high plasticity, orange-brown, red and grey	22.9	-	-	-	-	-
16038045 BH7 0.4 - 0.5m	CLAY, low plasticity, grey	10.4	-	-	-	-	-
16038046 BH7 0.9 - 1.0m	CLAY, low plasticity, grey	7.9	-	-	-	-	-
16038047 BH7 1.4 - 1.5m	CLAY, medium plasticity, pale brown	16.1	-	-	-	-	-

Notes

AS 1289.3.1.2, 3.2.1 & 3.4.1

Method of drying: Dry/Wet sieve:

Oven dried

Dry/Wet sieve: Curing time: Dry >24hrs

TEST RESULTS

AS 1289.2.1.1, 3.1.2, 3.2.1, 3.3.1, 3.4.1 & 3.6.1

CIVIL GEOTECHNICAL SERVICES

6 - 8 Rose Avenue, Croydon 3136

Report No Date of Issue 13/04/16

Job No

16038/R047

16038

Client	GEOAUST (DANDENONG SOUTH)	Tested by	SK
Project	JOB No. 4548 15 ANDERSON STREET	Date tested	07/04/16
Location	LILYDALE	Checked by	PJF

		%	%	%	%	%	İ
Sample Identification	Soil Description	Field Moisture Content	Liquid Limit	Plastic Limit	Plasticity Index	Linear Shrinkage	
16038048 BH7 1.5 - 1.6m	CLAY, high plasticity, pale grey	-	56	20	36	15.5	
16038049 BH7 1.9 - 2.0m	CLAY, high plasticity, pale grey and orange-brown	21.7	-	-	-	-	
16038050 BH7 2.4 - 2.5m	CLAY, high plasticity, pale grey and orange-brown	19.8	-	-	-	-	
16038051 BH8 1.1 - 1.2m	CLAY, high plasticity, pale brown and grey	19.6	-	-	-	-	
16038052 BH8 1.4 - 1.5m	CLAY, high plasticity, orange-brown and grey	20.8	-	-	-	-	
16038053 BH8 1.9 - 2.0m	CLAY, high plasticity, pale grey and orange-brown	18.8	-	-	-	-	
16038054 BH8 2.4 - 2.5m	CLAY, high plasticity, pale grey and brown	18.9	-	-	-	-	

AS 1289.3.1.2, 3.2.1 & 3.4.1

Method of drying: Dry/Wet sieve:

Oven dried

Curing time:

Dry >24hrs

